
IMPROVEMENT	OF	THE	ORTHOGONAL	CODE	CONVOLUTION	

CAPABILITIES	USING	FPGA	IMPLEMENTATION	

1ANITA	YADAV,	2SHEETAL	GANGWAR	

1,	2Masters	of	Technology	Scholar,	Department	of	Electronics	&	Communication	

Engineering,	Jayoti	Vidyapeeth	Women’s	University,	Jaipur‐	INDIA	

ABSTRACT	

In	 this	 paper,	 FPGA	 implementation	 of	 orthogonal	 code	 convolution	 is	 presented	 by	

employing	 Xilinx	 and	 Modelsim	 softwares.	 In	 digital	 communication	 system,	

convolution	 coding	 is	 preferred	 for	 the	 channel	 coding	 as	 it	 facilitates	 a	 better	 error	

correction	as	comparison	to	block	coding	which	does	not	require	memory.	Among	other	

techniques	such	as	Cyclic	Redundancy	and	Solomon	Codes;	orthogonal	coding	is	one	of	

the	codes	which	can	detect	errors	and	correct	corrupted	data	in	an	efficient	way.	When	

data	 is	 stored,	 compressed,	 or	 communicated	 through	 a	 media	 such	 as	 cable	 or	 air,	

sources	 of	 noise	 and	 other	 parameters	 such	 as	 EMI,	 crosstalk,	 and	 distance	 can	

considerably	 affect	 the	 reliability	 of	 these	 data.	 Error	 detection	 and	 correction	

techniques	are	therefore	required.	Orthogonal	Code	is	one	of	the	codes	that	can	detect	

errors	and	correct	corrupted	data.	An	n‐bit	orthogonal	code	has	n/2	1s	and	n/2	0s.	In	a	

previous	work	 these	properties	have	been	exploited	 to	detect	and	correct	errors.	The	

technique	 was	 implemented	 experimentally	 using	 Field	 Programmable	 Gate	 Arrays	

(FPGA).	 The	 results	 show	 that	 the	 proposed	 technique	 improves	 the	 detection	

capabilities	 of	 the	 orthogonal	 code	 by	 approximately	 50%,	 resulting	 in	 99.9%	 error	

detection,	and	corrects	as	predicted	up	to	(n/4‐1)	bits	of	error	in	the	received	impaired	

code	with	 bandwidth	 efficiency.	 The	 transmitter	 does	 not	 have	 to	 send	 the	 parity	 bit	

since	 the	 parity	 bit	 is	 known	 to	 be	 always	 zero.	 Therefore,	 if	 there	 is	 a	 transmission	

error,	the	receiver	will	be	able	to	detect	it	by	generating	a	parity	bit	at	the	receiving	end.	

1. INTRODUCTION	

Information	 and	 communication	

technology	 has	 brought	 enormous	

changes	to	our	life	and	turned	out	to	be	

one	 of	 the	 basic	 building	 blocks	 of	

modern	society.	Day	by	day,	 there	 is	an	

increasing	demand	of	network	 capacity	

due	to	the	use	of	 internet	and	real	 time	

transmission	 of	 voice	 and	 picture.	 To	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 758



fulfill	 these	 requirements	 data	

transmission	 at	 high	 bit	 rates	 is	

essential	 for	 various	 aspects	 such	 as	

video,	 high‐quality	 audio	 and	 mobile	

integrated	 service	 digital	 network	

(ISDN).	

However,	 the	 data	 transmitted	 at	 high	

bit	 rates	 over	 mobile	 radio	 channels,	

leads	 to	 inter	symbol	 interference	(ISI).	

The	 significant	 factors	which	 cause	 the	

reliability	of	digital	data	communication	

are	 the	 transmission	 medium	 i.e.	 cable	

or	air,	sources	of	noise	and	some	others	

like	electromagnetic	 interface,	 crosstalk	

and	distance.	To	overcome	this	problem,	

error	correction	coding	is	a	solution	for	

the	 best	 possible	 communication.	 The	

main	 advantage	 of	 using	 coding	 is	 the	

efficiency	 of	 the	 channels	 use	 becomes	

higher	 as	 comparison	 to	 the	 case	when	

code	 is	 not	 used.	 Therefore,	 error	

detection	and	correction	techniques	are	

needed	which	can	detect	errors	such	as	

the	Cyclic	Redundancy	Check	and	others	

which	 can	 detect	 as	 well	 as	 correct	

errors	such	as	Solomon	Codes	[1‐3].	Our	

objective	in	this	paper	is	to	enhance	the	

error	 control	 capabilities	 of	 orthogonal	

codes	by	means	of	Field	Programmable	

Gate	Array	(FPGA)	implementation.	The	

CRC	 generation	 has	 many	 advantages	

over	 simple	 sum	 techniques	 or	 parity	

check.	This	coding	 is	binary	valued	and	

with	 equal	 number	 of	 1‟s	 and	 0‟s.	 All	

orthogonal	 codes	 can	 generate	 zero	

parity	bits	as	n‐bit	orthogonal	code	has	

n/2	1‟s	and	n/2	0‟s.	In	simple	there	are	

n/2	 positions	 where	 1‟s	 and	 0‟s	 differ	

and	hence,	each	antipodal	code	can	also	

generate	a	zero	parity	bit	[5].	It	is	noted	

that	 with	 this	 method,	 the	 transmitter	

does	 not	 have	 to	 send	 the	 parity	 bit	

since	 the	 parity	 bit	 is	 known	 to	 be	

always	zero.	

Therefore,	 if	 there	 is	 a	 transmission	

error,	the	receiver	will	be	able	to	detect	

it	 by	 generating	 a	 parity	 bit	 at	 the	

receiving	 end.	 In	 this	 paper,	 the	 FPGA	

implementation	 of	 orthogonal	 code	

convolution	 is	 presented	 by	 employing	

Xilinx	 and	 Modelsim	 softwares;	 in	

section	 second	 and	 third,	 the	 theory	 of	

orthogonal	coding	and	design	approach	

are	 presented.	 The	 simulated	 results	

and	 analysis	 are	 discussed	 in	 section	

fourth.	 Finally,	 section	 fifth	 concludes	

the	paper.	

2. ORTHOGONAL	CODES	

Orthogonal	 codes	 are	 consists	 of	 equal	

number	 of	 1‟s	 and	 0‟s	 e.g.	 n‐bit	

orthogonal	code	consist	n/2	1‟s	and	n/2	

0‟.	 Meaning,	 there	 are	 n/2	 positions	

where	1‟s	and	0‟s	differ.	In	this	way,	all	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 759



orthogonal	 codes	 generate	 zero	 parity	

bits.	An	illustration	of	16‐bit	orthogonal	

code	 is	 shown	 in	 figure	 1.	 Zero	 parity	

bits.	The	concept	is	illustrated	by	means	

of	an	8‐	bit	orthogonal	code	as	shown	in	

Fig.1.	 It	 has	 8‐orthogonal	 codes	 and	 8‐

antipodal	 codes	 for	 a	 total	 of	 16‐

biorthogonal	codes.	Antipodal	codes	are	

just	 the	 inverse	 of	 orthogonal	 codes;	

they	 are	 also	 orthogonal	 among	

themselves.

	

	

Figure	1:	A	16‐bit	orthogonal	code	has	16	orthogonal	codes	and	16‐antipodal	codes	for	a	total	of	32	bi‐

orthogonal	codes	

It	 is	 comprised	 of	 16‐orthogonal	 codes	

and	 16‐	 antipodal	 codes	 (just	 the	

inverse	of	orthogonal	 codes)	 for	 a	 total	

of	32	bi‐orthogonal	codes	as	depicted	in	

figure	 2.	 The	 advantage	 with	 this	

approach	 is	 that	 transmitter	 does	 not	

need	to	send	the	parity	bit	as	parity	bit	

is	known	to	be	always	zero.	In	this	way,	

if	 error	 exists	 during,	 the	 receiver	 can	

detect	 by	 generating	 a	 parity	 bit	 at	 the	

receiving	end.	In	orthogonal	coding,	a	k‐

bit	data	 set	 is	mapped	 into	 a	unique	n‐

bit	 before	 transmission.	 Here,	 we	 have	

considered	a	5‐bit	data	set	which	is	can	

be	 represented	 by	 a	 unique	 16‐bit	

orthogonal	 code	 and	 transmitted	

without	 the	 parity	 bit.	 After	 receiving	

the	 data,	 it	 is	 decoded	 based	 on	 code	

correlation	 by	 setting	 a	 threshold	

midway	between	two	orthogonal	codes.	

The	threshold	midway	is	represented	as		

dth=	n/4	 	

Where	 n	 is	 the	 code	 length	 and	 dth	 is	

the	 threshold	 midway	 between	 two	

orthogonal	 codes.	 According	 to	 above	

equation,	 for	 16‐bit	 orthogonal	 coding,	

threshold	 midway	 is	 4	 between	 two	

orthogonal	codes.	This	approach	offers	a	

decision	 process,	 where	 the	 incoming	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 760



impaired	 orthogonal	 code	 is	 examined	

for	 correlation	 with	 the	 neighbouring	

codes	 for	 a	 possible	 match.	 It	 is	 noted	

that	 the	acceptance	criterion	 for	a	valid	

code	 is	 that	 an	 n‐bit	 comparison	 must	

yield	 a	 good	 autocorrelation	 value;	

otherwise,	 a	 false	 detection	 will	 occur.	

Where	 R(x,	 y)	 is	 the	 auto	 correlation	

function,	n	is	the	code	length,	dth	is	the	

threshold	 defined	 in	 (1).	 Since	 the	

threshold	 (dth)	 is	 in	between	 two	valid	

codes,	an	additional	1‐bit	offset	is	added	

to	(2)	for	reliable	detection.	The	average	

number	of	 errors	 that	 can	be	 corrected	

by	 means	 of	 this	 process	 can	 be	

estimated	 by	 combining	 (1)	 and	 (2),	

yielding,(3).	

In	(3),	t	is	the	number	of	errors	that	can	

be	 corrected	 by	 means	 of	 an	 n‐bit	

orthogonal	 code.	 For	 example,	 a	 single	

error‐correcting	orthogonal	code	can	be	

constructed	 by	 means	 of	 an	 8‐bit	

orthogonal	 code	 (n	 =	 8).	 Similarly,	 a	

three‐error	 correcting	 orthogonal	 code	

can	be	constructed	by	means	of	a	16‐bit	

orthogonal	 code	 (n	 =	 16),	 and	 so	 on.	

Table‐1	 below	 shows	 a	 few	 orthogonal	

codes	 and	 the	 corresponding	 error	

correcting	capabilities:	

	

Figure	2:	Encoding	and	Decoding	Process	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 761



TABLE	I:	Orthogonal	Codes	and	the	

Corresponding	Chip	Error	Control	Capabilities	

	

3. DESIGN	APPROACH	

Our	 design	 approach	 is	 based	 on	 the	

comparison	 between	 the	 received	 code	

and	 all	 the	 orthogonal	 code	

combinations	 stored	 in	a	 look	up	 table;	

which	 has	 two	major	 components	 such	

as	a	transmitter	and	a	receiver.	The	first	

component	 (transmitter)	 consists	 of	

two	 blocks	 such	 as	 encoder	 and	 shift	

register	which	is	shown	in	figure	3.			

3.1	DESIGN	METHODOLOGY	

Since	 there	 is	 an	 equal	 number	 of	 1’s	

and	 0’s,	 each	 orthogonal	 code	 will	

generate	a	zero	parity	bit.	If	the	data	has	

been	corrupted	during	the	transmission	

the	 receiver	 can	 detect	 errors	 by	

generating	 the	 parity	 bit	 for	 the	

received	 code	 and	 if	 it	 is	 not	 zero	 then	

the	 data	 is	 corrupted.	 However	 the	

parity	 bit	 doesn’t	 change	 for	 an	 even	

number	 of	 errors,	 hence	 the	 receiver	

can	 only	 detect	 errors	 2ᴺ	 /2	

combinations	 of	 the	 received	 code.	

Therefore	detection	percentage	 is	50%.	

Our	 approach	 is	 not	 to	 use	 the	 parity	

generation	method	to	detect	the	errors,	

but	 a	 simple	 technique	 based	 on	 the	

comparison	 between	 the	 received	 code	

and	 all	 the	 orthogonal	 code	

combinations	 stored	 in	 a	 look	up	 table.	

The	 technique	 which	 involves	 a	

transmitter	 and	 receiver	 is	 described	

below.	

3.2	TRANSMITTER	

The	transmitter	includes	two	blocks:	an	

encoder	 and	 a	 shift	 register.	 The	

encoder	 encodes	 a	 k‐bit	 data	 set	 to	

n=2^k‐1	bits	of	the	orthogonal	code	and	

the	shift	register	transforms	this	code	to	

a	 serial	data	 in	order	 to	be	 transmitted	

as	 shown	 in	 Fig.3.	 For	 example,	 5‐bit	

data	 is	 encoded	 to	 16‐bit	 orthogonal	

code	 according	 to	 the	 lookup	 table	

shown	 in	 Fig.2.	 The	 generated	

orthogonal	 code	 is	 then	 transmitted	

serially	 using	 a	 shift	 register	 with	 the	

rising	edge	of	the	clock.	

	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 762



3.3	RECEIVER	

The	received	code	is	processed	through	

the	 sequential	 steps,	 as	 shown	 in	 Fig.4.	

The	 incoming	 serial	 bits	 are	 converted	

into	n‐bit	parallel	codes.This	 is	done	by	

counting	 the	 number	 of	 ones	 in	 the	

signal	 resulting	 from	 ‘XOR’	 operation	

between	 the	 received	 code	 and	 each	

combination	of	 the	orthogonal	 codes	 in	

the	 lookup	 table.	 A	 counter	 is	 used	 to	

count	 the	 number	 of	 ones	 in	 the	

resulting	 n‐bit	 signal	 and	 also	 searches	

for	 the	 minimum	 count.	 However	 a	

value	rather	than	zero	shows	an	error	in	

the	 received	code.	The	orthogonal	 code	

in	 the	 lookup	 table	which	 is	 associated	

with	 the	 minimum	 count	 is	 the	 closest	

match	 for	 the	 corrupted	 received	 code.	

The	 matched	 orthogonal	 code	 in	 the	

lookup	 table	 is	 the	 corrected	 code,	

which	is	then	decoded	to	k‐bit	data.	The	

receiver	is	able	to	correct	up	to	(n/4)‐1	

bits	 in	 the	 received	 impaired	 code.	

However,	 if	 the	 minimum	 count	 is	

associated	 with	 more	 than	 one	

combination	 of	 orthogonal	 code	 then	 a	

signal,	REQ,	goes	high.	

	

4. CODING	TECHNIQUE	&	RESULTS	

4.1	VHDL	CODE	FOR	TRANSMITTER	

LIBRARY	IEEE;	

USE	IEEE.STD_LOGIC_1164.ALL;	

ENTITY	TRANSMITTER16	IS	

PORT(AIN:IN	STD_LOGIC_VECTOR(0	TO	4);	

	 	 	CLK,RST,LOAD:IN	STD_LOGIC;	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 763



	 	 	DOUT:OUT	STD_LOGIC);	

	 END	TRANSMITTER16;	

ARCHITECTURE	BEHAV	OF	TRANSMITTER16	IS	

SIGNAL	DATA_OUT:STD_LOGIC_VECTOR(0	TO	15);	

COMPONENT	BIT16_ENCODER	

	 PORT(AIN:IN	STD_LOGIC_VECTOR(0	TO	4);	

	 	 	DATA_OUT:OUT	STD_LOGIC_VECTOR(0	TO	15));	

END	COMPONENT;	

COMPONENT	PISO16	

	 PORT(B:IN	STD_LOGIC_VECTOR(0	TO	15);	

	 	 	CLK,RST,LOAD:IN	STD_LOGIC;	

																DOUT:OUT	STD_LOGIC);	

END	COMPONENT;	

BEGIN	

CHIP1:BIT16_ENCODER	

PORT	MAP(AIN,DATA_OUT);	

CHIP2:PISO16	

PORT	MAP(DATA_OUT,CLK,RST,LOAD,DOUT);	

END	BEHAV;	

	 	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 764



4.1.1	SIMILATION	RESULT	OF	TRANSMITTER	

	

4.2	ENCODER	(MAPPING)	

An	 encoder	 is	 a	 device,	 circuit,	

transducer,	 software	 program,	

algorithm	 or	 person	 that	 converts	

information	from	one	format	or	code	to	

another,	 for	 the	 purposes	 of	

standardization,	speed,	secrecy,	security	

or	compressions.	

The	 conversion	 of	 input	 data	 into	

orthogonal	coder	is	given	below:‐	

5	bit	Input	data	 16	 bit	 Orthogonal	

Code	

Selected	 input	 data	 =>Output	 data	 of	

Encoder	

"00000"	 	=>	 	

"0000000000000000";	

"00001"	 =>	 	

"0101010101010101";	

"00010"	 	=>	 	

"0011001100110011";	

"00011"	 	=>	 	

"0110011001100110";	

"00100"	 	=>	 	

"0000111100001111";	

"00101"	 	=>	 	

"0101101001011010";	

"00110"	 =>

	 "0011110000111100";	

"00111"	 	=>

	 "0110100101101001";	

"01000"	 =>

	 "0000000011111111";	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 765



"01001"	 =>

	 "0101010110101010";	

"01010"	 	=>

	 "0011001111001100";	

"01011"	 	=>	 	

"0110011010011001";	

"01100"	 	=>

	 "0000111111110000";	

"01101"	 	=>

	 "0101101010100101";	

"01110"	 	=>

	 "0011110011000011";	

"01111"	 	=>

	 "0110100110010110";	

"10000"		 =>	 	

"1111111111111111";	

"10001"		 =>	 	

"1010101010101010";	

"10010"		 =>	 	

"1100110011001100";	

"10011"	 	=>	 	

"1001100110011001";	

"10100"	 	=>	 	

"1111000011110000";	

"10101"	 	=>	 	

"1010010110100101";	

"10110"	 	=>	 	

"1100001111000011";	

"10111"	 	=>

	 "1001011010010110";	

"11000"	 	=>	 	

"1111111100000000";	

"11001"	 	=>	 	

"1010101001010101";	

"11010"	 	=>	 	

"1100110000110011";	

"11011"	 	=>	 	

"1001100101100110";	

"11100"	 	=>

	 "1111000000001111";	

"11101"	 	=>	 	

"1010010101011010";	

"11110"	 	=>	 	

"1100001100111100";	

"11111"	 	=>

	 "1001011001101001";	

	 	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 766



VHDL	CODE	FOR	ENCODER	

LIBRARY	IEEE;	

USE	IEEE.STD_LOGIC_1164.ALL;	

ENTITY	BIT16_ENCODER	IS	

PORT(AIN:IN	STD_LOGIC_VECTOR(0	TO	4);	

	 	 	DATA_OUT:OUT	STD_LOGIC_VECTOR(0	TO	15));	

	 	 	END	BIT16_ENCODER;	

ARCHITECTURE	BEHAV	OF	BIT16_ENCODER	IS	

BEGIN	

PROCESS(AIN)	

	 BEGIN	

CASE	AIN	IS	

	 										WHEN	"00000"	=>	DATA_OUT	<=	"0000000000000000";	

	 	 WHEN	"00001"	=>	DATA_OUT	<=	"0101010101010101";	

	 	 WHEN	"00010"	=>	DATA_OUT	<=	"0011001100110011";	

	 	 WHEN	"00011"	=>	DATA_OUT	<=	"0110011001100110";	

	 	 WHEN	"00100"	=>	DATA_OUT	<=	"0000111100001111";	

	 	 WHEN	"00101"	=>	DATA_OUT	<=	"0101101001011010";	

	 	 WHEN	"00110"	=>	DATA_OUT	<=	"0011110000111100";	

	 	 WHEN	"00111"	=>	DATA_OUT	<=	"0110100101101001";	

																						 WHEN	"01000"	=>	DATA_OUT	<=	"0000000011111111";	

	 	 WHEN	"01001"	=>	DATA_OUT	<=	"0101010110101010";	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 767



																						 WHEN	"01010"	=>	DATA_OUT	<=	"0011001111001100";	

	 	 WHEN	"01011"	=>	DATA_OUT	<=	"0110011010011001";	

	 	 WHEN	"01100"	=>	DATA_OUT	<=	"0000111111110000";	

	 	 WHEN	"01101"	=>	DATA_OUT	<=	"0101101010100101";	

	 	 WHEN	"01110"	=>	DATA_OUT	<=	"0011110011000011";	

	 	 WHEN	"01111"	=>	DATA_OUT	<=	"0110100110010110";	

																						 WHEN	"10000"	=>	DATA_OUT	<=	"1111111111111111";	

	 	 WHEN	"10001"	=>	DATA_OUT	<=	"1010101010101010";	

	 	 WHEN	"10010"	=>	DATA_OUT	<=	"1100110011001100";	

	 	 WHEN	"10011"	=>	DATA_OUT	<=	"1001100110011001";	

	 	 WHEN	"10100"	=>	DATA_OUT	<=	"1111000011110000";	

	 	 WHEN	"10101"	=>	DATA_OUT	<=	"1010010110100101";	

	 	 WHEN	"10110"	=>	DATA_OUT	<=	"1100001111000011";	

	 	 WHEN	"10111"	=>	DATA_OUT	<=	"1001011010010110";	

																						 WHEN	"11000"	=>	DATA_OUT	<=	"1111111100000000";	

	 	 WHEN	"11001"	=>	DATA_OUT	<=	"1010101001010101";	

	 	 WHEN	"11010"	=>	DATA_OUT	<=	"1100110000110011";	

	 	 WHEN	"11011"	=>	DATA_OUT	<=	"1001100101100110";	

	 	 WHEN	"11100"	=>	DATA_OUT	<=	"1111000000001111";	

	 	 WHEN	"11101"	=>	DATA_OUT	<=	"1010010101011010";	

	 	 WHEN	"11110"	=>	DATA_OUT	<=	"1100001100111100";	

	 	 WHEN	"11111"	=>	DATA_OUT	<=	"1001011001101001";	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 768



																						 WHEN	OTHERS		=>	DATA_OUT	<=	"‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐";	

END	CASE;	

	 END	PROCESS;	

END	BEHAV;	

SIMILATION	RESULT	OF	ENCODER	

	

	

	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 769



VHDL	CODE	FOR	RECEIVER	

LIBRARY	IEEE;	

USE	IEEE.STD_LOGIC_1164.ALL;	

ENTITY	RECEIVER16	IS	

PORT(DIN:IN	STD_LOGIC;	

	 	 	CLK,RST:IN	STD_LOGIC;	

	 	 	AOUT:OUT	STD_LOGIC_VECTOR(0	TO	4));	

END	RECEIVER16;	

ARCHITECTURE	BEHAV	OF	RECEIVER16	IS	

SIGNAL	Z,ZO:STD_LOGIC_VECTOR(0	TO	15);	

COMPONENT	SIPO16	

	 PORT(DIN:IN	STD_LOGIC;	

	 	 	CLK,RST:IN	STD_LOGIC;	

	 	 	Z:OUT	STD_LOGIC_VECTOR(0	TO	15));	

END	COMPONENT;	

COMPONENT	ERRORDET_CORR16	

	 PORT(Z:IN	STD_LOGIC_VECTOR(0	TO	15);	

	 	 	ZO:OUT	STD_LOGIC_VECTOR(0	TO	15));	

END	COMPONENT;	

COMPONENT	DECODER16	

PORT(ZO:IN	STD_LOGIC_VECTOR(0	TO	15);	

	 	 	AOUT:OUT	STD_LOGIC_VECTOR(0	TO	4));	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 770



END	COMPONENT;	

BEGIN	

CHIP1:SIPO16	

PORT	MAP(DIN,CLK,RST,Z);	

CHIP2:ERRORDET_CORR16	

PORT	MAP(Z,ZO);	

CHIP3:DECODER16	

PORT	MAP(ZO,AOUT);	

END	BEHAV;	

SIMULATION	RESULT	OF	RECEIVER	

	

	

VHDL	CODE	FOR	DECODER	

LIBRARY	IEEE;	

USE	IEEE.STD_LOGIC_1164.ALL;	

ENTITY	DECODER16	IS	

PORT(ZO:IN	STD_LOGIC_VECTOR(0	TO	15);	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 771



	 	 	AOUT:OUT	STD_LOGIC_VECTOR(0	TO	4));	

END	DECODER16;	

ARCHITECTURE	BEHAV	OF	DECODER16	IS	

BEGIN	

PROCESS(ZO)	

	 BEGIN	

CASE	ZO	IS	

																						 WHEN	"0000000000000000"	=>	AOUT	<="00000";	

	 	 WHEN	"0101010101010101"	=>	AOUT	<="00001";	

	 	 WHEN	"0011001100110011"	=>	AOUT	<="00010";	

	 	 WHEN	"0110011001100110"	=>	AOUT	<="00011";	

	 	 WHEN	"0000111100001111"	=>	AOUT	<="00100";	

	 	 WHEN	"0101101001011010"	=>	AOUT	<="00101";	

	 	 WHEN	"0011110000111100"	=>	AOUT	<="00110";	

	 	 WHEN	"0110100101101001"	=>	AOUT	<="00111";	

																						 WHEN	"0000000011111111"	=>	AOUT	<="01000";	

	 	 WHEN	"0101010110101010"	=>	AOUT	<="01001";	

	 	 WHEN	"0011001111001100"	=>	AOUT	<="01010";	

	 	 WHEN	"0110011010011001"	=>	AOUT	<="01011";	

	 	 WHEN	"0000111111110000"	=>	AOUT	<="01100";	

	 	 WHEN	"0101101010100101"	=>	AOUT	<="01101";	

	 	 WHEN	"0011110011000011"	=>	AOUT	<="01110";	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 772



	 	 WHEN	"0110100110010110"	=>	AOUT	<="01111";	

																						 WHEN	"1111111111111111"	=>	AOUT	<="10000";	

	 	 WHEN	"1010101010101010"	=>	AOUT	<="10001";	

	 	 WHEN	"1100110011001100"	=>	AOUT	<="10010";	

	 	 WHEN	"1001100110011001"	=>	AOUT	<="10011";	

	 	 WHEN	"1111000011110000"	=>	AOUT	<="10100";	

	 	 WHEN	"1010010110100101"	=>	AOUT	<="10101";	

	 	 WHEN	"1100001111000011"	=>	AOUT	<="10110";	

	 	 WHEN	"1001011010010110"	=>	AOUT	<="10111";	

																					 	WHEN	"1111111100000000"	=>	AOUT	<="11000";	

	 	 WHEN	"1010101001010101"	=>	AOUT	<="11001";	

	 	 WHEN	"1100110000110011"	=>	AOUT	<="11010";	

																					 WHEN	"1001100101100110"	=>	AOUT	<="11011";	

	 	 WHEN	"1111000000001111"	=>	AOUT	<="11100";	

	 	 WHEN	"1010010101011010"	=>	AOUT	<="11101";	

	 	 WHEN	"1100001100111100"	=>	AOUT	<="11110";	

	 	 WHEN	"1001011001101001"	=>	AOUT	<="11111";	

																					WHEN	OTHERS	=>	AOUT	<=	"ZZZZZ";	

	 	 	 END	CASE;	

	 END	PROCESS;	

END	BEHAV;	

	 	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 773



SIMULATION	RESULT	OF	DECODER	

	

5. CONCLUSION	

The	 results	 of	 the	 orthogonal	 code	

implementation	 show	 that	 this	

technique	improved	the	error	detection	

from	 50%	 to93%	 for	 8‐bit	 orthogonal	

code	 and	 99.9%	 for	 16‐bit	 orthogonal	

code.	 The	 technique	 proposed	 can	 be	

applied	to	any	encoding	system	used	for	

digital	 transmission.	 Future	 work	

includes	 improvement	 of	 correction	

capasbilities	of	the	orthogonal	code	and	

paralell	implementation	to	speed	up	the	

data	processing.	

REFERENCES	

[1]	 Baicheva,	 T.,	 S.	 Dodunekov,	 and	 P.	

Kazakov,	 “Undetected	 error	 probability	

performance	 of	 cyclic	 redundancy‐	

check	codes	of	16‐bit	redundancy,”	IEEE	

Proc.	Comms.,	Vol.	147,	No.	5,	Oct.	2000,	

pp.	253‐	256.	

[2]	 A.	 Hokanin,	 H.	 Delic,	 S.	 Sarin,	 “Two	

dimensional	 CRC	 for	 efficient	

transmission	of	ATM	Cells	over	CDMA,”	

IEEE	 Communications	 Letters,	 Vol.	 4,	

No.	4,	April	2000,	pp.131‐133.	

[3]	 Stylianakis	 V.,	 Toptchiyski	 S,	 “A	

Reed‐Solomon	 coding/decoding	

structure	 for	 an	 ADS	 modem,”	

Electronics,	Circuits	and	Systems,	

[4]	 Stylianakis	 V	 ,Toptchiyski	 S,	 “A	

Reed‐Solomon	 coding/decoding	

structure	 for	 an	 ADS	 modem”,	

Electronics,	Circuits	and	Systems,	1999.	

Proceedings	of	ICECS	apos	;	99.	The	6th	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 774



IEEE	International	Conference	 ,	Volume	

1,	Issue	,	1999,	pp.	473	–	476.	

[5]	 S.	 Faruque,	 “Broadband	

Communications	 Based	 on	 Code	

Division	 Parallel	 Access	 (CDPA)”,	 The	

International	 Engineering	 Consortium	

(IEC),	 Annual	 Review	 of	

Communications,	 Vol.	 57,	 ISBN:	 1‐

931695‐	28‐8,	Nov.	2004.	

[6]	 Saleh	 Faruque	 ,	 “Error	 Control	

Coding	 Based	 on	 Orthogonal	 Codes”,	

Wireless	 Proceedings,	 Vol.	 2,	 pp.	 608‐

615,	2004.	

[7]	 S.	 Faruque,	 A.	 Dhirde	 ,N.	 Kaabouch	

“Forward	error	control	coding	based	on	

orthogonal	code	and	its	implementation	

using	 FPGA”,	 7th	 IASTED	 International	

Conference,	 Montreal,	 Quebec,	 Canada,	

May	30	–	June	1.	

	

ANITA YADAV et al. 
DATE OF PUBLICATION: JULY 20, 2014

ISSN: 2348-4098 
VOLUE 02 ISSUE 06 JULY 2014

INTERNATIONAL JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY- www.ijset.in 775




