
Simran P, 2022, 10:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2022 Anju Taiwade. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Automating Cross Site Scripting
Simran P, Dr. A. Rengarajan

Dept of MCA, School of CS & IT,

Jain Deemed-to-be University, Bengaluru,India

Email: simrangiriya@gmail.com, a.rengarajan@jainuniversity.ac.in

I. INTRODUCTION

Cross-Site Scripting, commonly also known as XSS, is

a type of attack that gathers malicious information

about a user, typicallyin the form of a hyperlink that

will save the users credentials. Cross-site scripting

(XSS) is a web security vulnerability where the

attacker injects malicious client-side script into a web

page. When a user visits a web page, the script code

is downloaded and run by the web browser.

XSS represents most web-based security

vulnerabilities. One reason of the popularity of XSS

vulnerabilities is that developers of web-based

applications often have little or no security

background. The result is that it can be poorly

developed code, riddled with security flaws, is

deployed, and made accessible to the whole Internet.

Currently, XSS attacks are dealt by fixing the server-

side vulnerability, which is usually the result of

improper input validation routines.

XSS protection can be configured for multiple types

of request and response data – URL query

parameters – URL encoded input (“POST data”) –

HTTP headers, Cookies. The possibilities to

manipulate HTML documents displayed by the

browser with JavaScript or influence the operation of

the browser itself are dangerous features if misused.

The misuse is directly relating to the functions

available for a malicious programmer.

Eventually,JavaScript provides full access to HTML

documents using the document object model

(DOM). A script can modify at least the document it

is residing in arbitrarily, it is also possible to delete

the document and create a totally different

document. From an attacker‟s point of view two

things are of special interest, cookies associated to a

Document and access credentials JavaScript also

provides access possibilities to this information. We

are using two types of xss in this project as follow:

Reflected XSS Attacks

Reflected attacks are the ones where the injected

script is reflected off the web server, such as in an

error message, search result, or any other response

that includes some of the input sent to the server as

part of the request only. Reflected attacks are sent to

victims via another route, such as in an e-mail

message, or on some other website.

 When a user is clicking on a malicious link,

submitting a specially crafted form, or even just

browsing to a malicious sitethen injected code

travels to the vulnerable web site, which reflects the

attack back to the user‟s browser. The browser then

executes the code because it came from a “trusted”

server. Reflected Cross site scripting is also referred

to as non-Persistent.

Stored XSS Attacks

Stored attacks are those when the injected script is

permanently stored on the targets servers, such as in

a database, message forum, visitor log, comment

field, etc. The victim then recoversthe malicious script

Abstract- Cross site scripting (XSS) is a type of scripting attack on web pages and account as one of the

unsafe vulnerabilities existed in web applications. As prevention against such attacks like, it is essential to

implement security controls that certainly block the third-party intrusion. Recently the most dangerous

attacks are reflected, and DOM based cross-site scripting attacks because in both cases attacker’s attack using

server-side scripting and do forgery over the network, it is very hard to detect and therefore it must be

prevented. Vulnerabilities of the websites are exploited over the network through web request using GET and

POST method

Keywords- XSS attack, web application, XSS vulnerabilities, phishing attack, fake maliciouswebsite, cross-site

scripting, security of

 Simran P. International Journal of Science, Engineering and Technology, 2022, 10:2

Page 2 of 3

International Journal of Science,
Engineering and Technology

An Open Access Journal

from the server when it requests the stored

information. Stored XSS is also sometimes referred to

as Persistent.

II.SYSTEM REQUIREMENTS

Requirements Specifications specifies the usage of

Software and Hardware with them corresponding

version, modules, etc.…, which are necessary for the

overall of the project.

1.Hardware requirements:

Processor – i5 0r i7

Hard Disk –200 GB

Memory – 4GB RAM

2.Software Requirements:

OS: Windows 10, VMware, Kali Linux

Go Language

III.SYSTEM ANALYSIS

For the following system to run this project you need

the following requirements as follow-

1. Kali Linux –Kali Linus is an open-source, Debian-based

Linux distribution geared towards various information

security tasks, such as Penetration Testing, Security

Research, Computer Forensics etc.

2. Installed ParamSpider - ParamSpider, a new open-

source tool, automates the discovery of parameters in

URL addresses, a key step in probing websites and

applications for vulnerabilities.

3. Installed Dalfox- It is a fast, powerful parameter

analysis and XSS scanner, based on a golang/DOM

parser.

The above-mentioned requirements should be there to

run this project smoothly. With the help of this we will

be able to find the list of URLs which are vulnerabilities

and we can proceed with the next step of finding the

XSS so we cansee the result of the vulnerable

IV.PROJECT DESCRIPTION

XSS attacks are those type of attacksthat the web

applications which is often used to steal the cookies

from a web browser „s database. The following figure

1 is an architecture which shows the steps of

exploiting the XSS vulnerability by a malicious

attacker. This architecture contains three partsas

follows- Attacker Domain, Victim Domain and

Vulnerable Web Application. Here are some steps

which will explain for exploiting the XSS attack: -

 The attacker has found that theweb application is

vulnerable to Cross-Site Scripting attack. After this,

attacker will post a malicious Java Script Code on

the Vulnerable Web Application whose function is

to steal cookies of the victim „s account session.

 Then the victim logs into the vulnerable web

application by giving the user-id and password. As

a result, the web server of web application will

generate and transfer the cookie of that particular

session to victim „s web browser.

 The victim browsesthe malicious Java Script Code

and gets executed on its browser.The Script

Interpreter of the victim „s browser gets invoked

and transfers the cookies of the victim „s session to

the attacker „s domain.

 Now lastly, these cookies will be utilized by the

attacker to get into the account of victim and

attack.

Fig 1 Working of XSS

V.EXISTING SYSTEM

 In the existing system we do manual reconnaissance

for Cross Site-Scripting (XSS). Manual testing may

involve entering sentinelXSS inputs into form

fields and parameter values in HTTP Requests

and look for resulting pop-ups in subsequent

responses. It is very difficult to go through

numbers of URL‟s and find the vulnerability in them,

has it been time consuming. So, if we use this tool, it

saves time and increases accuracy as well.

 Simran P. International Journal of Science, Engineering and Technology, 2022, 10:2

Page 3 of 3

International Journal of Science,
Engineering and Technology

An Open Access Journal

 VI.PROPOSED SYSTEM

In the proposed system we are using automated

tool, The complexity of today‟s websites and web-

applications practically mandates the use of security

testing tools to keep their data safe. There are

several automated tools, including some Browser

Plugins that can be useful in detecting Cross-Site

Scripting (XSS) vulnerabilities. The use of automated

tools can lend a false sense of security to developers

and testers since the tools can be blind to certain

variations of Cross-Site Scripting (XSS) defects.

We are using two tools as follows:

1. ParamSpider-ParamSpider, a new open-source

tool, automates the discovery of parameters in URL

addresses, a key step in probing websites and

applications for vulnerabilities.

2. DalFox- It is a fast, powerful parameter analysis

and XSS scanner, based on a golang/DOM parser.

VII.FLOW CHART DIAGRAM

The flowchart diagram shows the complete flow of

data from the beginning till the end of the project.

The verifications, which are done by the system to

acknowledge the identity of the user and give

him/her, access to the system.

Fig 2 Flow chart .

VIII.CONCLUSION

Cross-site scripting attacks, while a passive attack,

but because there are many sites on this loophole,

likely to cause leaks and illegal data server to steal,

the danger is very large, if ordinary users browse the

web carefully, WEB applications developers tight

design, this attack is difficult to achieve. This project

will help us to find the cross-site scripting

vulnerabilities using automated tools which is much

faster than the manual method. It helps the user or

the person to use the tools such as ParamSpider and

Dalfox for finding the parameters and procedure

further.

REFERENCES

1. Shielding Cross-Site Scripting Attacks Using the

State of Art Techniques Megala Manickam and Uma

Maheshwari Govindasamy

2. A study on detection of Cross Site Scripting (XSS)

attacks, Vinayak Pai, Govardhan Hegde K

3. Cross-Site-Scripting Attacks and Their Prevention

during Development Ms. Daljit Kaur, Dr. Parminder

Kaur

4. BLUEPRINT: Robust Prevention of Cross-site

Scripting Attacks for Existing Browsers Mike Ter

Louw mter V.N. Venkatakrishnan

5. Detecting Cross-Site Scripting in Web Applications

Using Fuzzy Inference System Bakare K. Ayeni,

Junaidu B. Sahalu, and Kolawole R. Adeyanju

6. A Survey on Cross-Site Scripting Attacks Joaquin

Garcia-Alfaro and Guillermo Navarro-Arribas

7. A Study of Existing Cross-Site Scripting Detection

and Prevention Techniques Using XAMPP and

VirtualBox Jalen Mack, Yen-Hung (Frank) Hu, and

Mary Ann Hoppa

8. Cross-site Scripting Research: A Review PMD

Nagarjun, Shaik Shakeel Ahamad

9. A Survey on Detection and Prevention of Cross-Site

Scripting Attack V. Nithya, S. Lakshmana Pandian

and C. Malarvizhi3

10. Prevention Of Cross-Site Scripting Attacks (XSS) On

Web Applications in The Client-SideS. SHALINI, S.

USHA

