
Sudipta Acharjee, 2023, 11:4

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2023 Sudipta Acharjee , This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Study of Bitwise Operations in C/C++
Assistant Professor Sudipta Acharjee

Dept. of Computer Engineering

GND DSEU Rohini Campus, Rohini, Delhi

sudipta.acharjee@dseu.ac.in

I. INTRODUCTION

In the C programming language, operations can be

performed on a bit level using bitwise operators. Bit

wise operations are contrasted by byte-

level operations which characterize the bitwise

operators' logical counterparts, the AND, OR, NOT

operators. Instead of performing on individual bits,

byte-level operators perform on strings of eight bits

(known as bytes) at a time.

The reason for this is that a byte is normally the

smallest unit of addressable memory (i.e. data with a

unique memory address)This applies to bitwise

operators as well, which means that even though

they operate on only one bit at a time they cannot

accept anything smaller than a byte as their input. of

these operators are also available in C++, and

many C-family languages.

Bit wise operators

Bi C provides six operators for bit manipulation.

Symbol Operator

& bitwise AND

| bitwise inclusive OR

^ bitwise XOR (exclusive OR)

<< left shift

>> right shift

~
bitwise NOT (one's complement)

(unary)

Bitwise AND &

bit a bit b a & b (a AND b)

Abstract- Bitwise operators are characters that represent actions (bitwise operations) to be performed on

single bits. They operate at the binary level and perform operations on bit patterns that involve the

manipulation of individual bits.Bitwise operations in C/C++ are asked frequently in programming

interviews as well as competitive programming. Therefore, it's essential to practice problems that use a

variety of approaches and algorithms.In C/C++, bitwise operators perform operations on integer data at

the individual bit-level. These operations include testing, setting, or shifting the actual bits.We use the

bitwise operators in C language to perform operations on the available data at a bit level. Thus,

performing a bitwise operation is also called bit-level programming. It is mainly used in numerical

computations for a faster calculation because it consists of two digits – 1 or 0.In this article, we will take a

look into the Bitwise Operators in C and C++ according to the use with the help of programming codes.In

this article, we will learn about different types of operands and bitwise operators in C/C++, their

functionality and examples of how to use them.

Keywords- Bitwise Operators, bit, binary.

.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C-family

 Sudipta Acharjee. International Journal of Science, Engineering and Technology, 2023,

11:4

Page 2 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

0 0 0

0 1 0

1 0 0

1 1 1

The bitwise AND operator is a single am

persand: & . It is just a representation of AND which

does its work on the bits of the operands rather than

the truth value of the operands. Bitwise binary AND

performs logical conjunction (shown in the table

above) of the bits in each position of a number in its

binary form. For instance, working with a byte (the

char type):

 11001000

& 10111000

 = 10001000

The most significant bit of the first number is 1 and

that of the second number is also 1 so the most

significant bit of the result is 1; in the second most

significant bit, the bit of second number is zero, so

we have the result as 0. [2]

Bitwise OR |

bit a bit b a | b (a OR b)

0 0 0

0 1 1

1 0 1

1 1 1

Similar to bitwise AND, bitwise OR performs logical

disjunction at the bit level. Its result is a 1 if either of

the bits is 1 and zero only when both bits are 0. Its

symbol is | which can be called a pipe.

 11001000

 | 10111000

 = 11111000

[2]

Bitwise XOR ^

bit a bit b a ^ b (a XOR b)

0 0 0

0 1 1

1 0 1

1 1 0

The bitwise XOR (exclusive or) performs an exclusive

disjunction, which is equivalent to adding two bits

and discarding the carry. The result is zero only when

we have two zeroes or two ones.[3] XOR can be used

to toggle the bits between 1 and 0. Thus i = i ^

1 when used in a loop toggles its values between 1

and 0.[4]

 11001000

 ^ 10111000

 = 01110000

Shift operators

There are two bitwise shift operators. They are

• Right shift (>>)

• Left shift (<<)Right shift >>

The symbol of right shift operator is >> . For its

operation, it requires two operands. It shifts each bit

in its left operand to the right. The number following

the operator decides the number of places the bits

are shifted (i.e. the right operand). Thus by

doing ch>> 3 all the bits will be shifted to the right

by three places and so on.However, do note that a

shift operand value which is either a negative

number or is greater than or equal to the total

number of bits in this value results in undefined

behaviour. For example, when shifting a 32 bit

unsigned integer, a shift amount of 32 or higher

would be undefined.

Example:

If the variable ch contains the bit pattern 11100101 ,

then ch>> 1 will produce the result 01110010 ,

and ch>> 2 will produce 00111001 .

Here blank spaces are generated simultaneously on

the left when the bits are shifted to the right. When

performed on an unsigned type or a non-negative

value in a signed type, the operation performed is

a logical shift, causing the blanks to be filled by 0 s

(zeros). When performed on a negative value in a

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bitwise_operations_in_C#cite_note-cprogramming.com-2
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Bitwise_operations_in_C#cite_note-cprogramming.com-2
https://en.wikipedia.org/wiki/Exclusive_disjunction
https://en.wikipedia.org/wiki/Exclusive_disjunction
https://en.wikipedia.org/wiki/Bitwise_operations_in_C#cite_note-3
https://en.wikipedia.org/wiki/Bitwise_operations_in_C#cite_note-4
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Undefined_behavior
https://en.wikipedia.org/wiki/Undefined_behavior
https://en.wikipedia.org/wiki/Logical_shift

 Sudipta Acharjee. International Journal of Science, Engineering and Technology, 2023,

11:4

Page 3 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

signed type, the result is technically implementation-

defined (compiler dependent),[5] however most

compilers will perform an arithmetic shift, causing

the blank to be filled with the set sign bit of the left

operand. Right shift can be used to divide a bit

pattern by 2 as shown:

i=14;// Bit pattern 00001110

j=i>>1;// here we have the bit pattern shifted by

1 thus we get 00000111 = 7 which is 14/2

Right shift operator usage

Left shift <<

The symbol of left shift operator is << . It shifts each

bit in its left-hand operand to the left by the number

of positions indicated by the right-hand operand. It

works opposite to that of right shift operator. Thus

by doing ch<< 1 in the above example (11100101)

we have 11001010 . Blank spaces generated are filled

up by zeroes as above.

However, do note that a shift operand value which is

either a negative number or is greater than or equal

to the total number of bits in this value results

in undefined behaviour. This is defined in the

standard at ISO 9899:2011 6.5.7 Bit-wise shift

operators. For example, when shifting a 32 bit

unsigned integer, a shift amount of 32 or higher

would be undefined.

Left shift can be used to multiply an integer by

powers of 2 as in

inti=7;// Decimal 7 is Binary (2^2) + (2^1) + (2^0) =

0000 0111

intj=3;// Decimal 3 is Binary (2^1) + (2^0) =

0000 0011

k=(i<<j);// Left shift operation multiplies the value by

2 to the power of j in decimal

// Equivalent to adding j zeros to the binary

representation of i

// 56 = 7 * 2^3

// 0011 1000 = 0000 0111 << 0000 0011

Example: a simple addition program

The following program adds two operands using

AND, XOR and left shift (<<).

#include<stdio.h>

intmain(void)

{ unsignedintx=3,y=1,sum,carry;

sum=x^y;// x XOR y

carry=x&y;// x AND y

while(carry!=0)

{

carry=carry<<1;// left shift the carry

x=sum;// initialize x as sum

y=carry;// initialize y as carry

sum=x^y;// sum is calculated

carry=x&y;/* carry is calculated, the loop condition is

 evaluated and the process is

repeated until

 carry is equal to 0.

 */

}

printf("%u\n",sum);// the program will print 4

return0;

}

Bitwise assignment operators

C provides a compound assignment operator for

each binary arithmetic and bitwise operation. Each

operator accepts a left operand and a right operand,

performs the appropriate binary operation on both

and stores the result in the left operand.[6]

The bitwise assignment operators are as follows.

Symbol Operator

&= bitwise AND assignment

|= bitwise inclusive OR assignment

^= bitwise exclusive OR assignment

<<= left shift assignment

>>= right shift assignment

Logical equivalents

Four of the bitwise operators have equivalent logical

operators. They are equivalent in that they have the

same truth tables. However, logical operators treat

each operand as having only one value, either true or

false, rather than treating each bit of an operand as

an independent value. Logical operators consider

zero false and any nonzero value true. Another

difference is that logical operators perform short-

circuit evaluation.

The table below matches equivalent operators and

shows a and b as operands of the operators.

Bitwise Logical

a & b a && b

https://en.wikipedia.org/wiki/Bitwise_operations_in_C#cite_note-5
https://en.wikipedia.org/wiki/Arithmetic_shift
https://en.wikipedia.org/wiki/Undefined_behavior
https://stackoverflow.com/questions/4945703/left-shifting-with-a-negative-shift-count
https://stackoverflow.com/questions/4945703/left-shifting-with-a-negative-shift-count
https://en.wikipedia.org/wiki/Augmented_assignment
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Bitwise_operations_in_C#cite_note-6
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.wikipedia.org/wiki/Short-circuit_evaluation

 Sudipta Acharjee. International Journal of Science, Engineering and Technology, 2023,

11:4

Page 4 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

a | b a || b

a ^ b a != b

~a !a

!= has the same truth table as ^ but unlike the true

logical operators, by itself != is not strictly speaking

a logical operator. This is because a logical operator

must treat any nonzero value the same. To be used

as a logical operator != requires that operands be

normalized first. A logical not applied to both

operands won’t change the truth table that results

but will ensure all nonzero values are converted to

the same value before comparison. This works

because ! on a zero always results in a one and ! on

any nonzero value always results in a zero.

Example:

/* Equivalent bitwise and logical operator tests */

#include<stdio.h>

Void test Operator(char*name ,unsigned cha rwas,

unsigned char expected);

Int main (void)

{

// -- Bitwise operators -- //

//Truth tables packed in bits

constunsignedcharoperand1=0x0A;//0000 1010

constunsignedcharoperand2=0x0C;//0000 1100

constunsignedcharexpectedAnd=0x08;//0000 1000

constunsignedcharexpectedOr=0x0E;//0000 1110

constunsignedcharexpectedXor=0x06;//0000 0110

constunsignedcharoperand3=0x01;//0000 0001

constunsignedcharexpectedNot=0xFE;//1111 1110

testOperator("Bitwise

AND",operand1&operand2,expectedAnd);

testOperator("Bitwise

OR",operand1|operand2,expectedOr);

testOperator("Bitwise

XOR",operand1^operand2,expectedXor);

testOperator("Bitwise

NOT",~operand3,expectedNot);

printf("\n");

// -- Logical operators -- //

constunsignedcharF=0x00;//Zero

constunsignedcharT=0x01;//Any nonzero value

 // Truth tables packed in arrays

constunsignedcharoperandArray1[4]={T,F,T,F};

constunsignedcharoperandArray2[4]={T,T,F,F};

constunsignedcharexpectedArrayAnd[4]={T,F,F,F};

constunsignedcharexpectedArrayOr[4]={T,T,T,F};

constunsignedcharexpectedArrayXor[4]={F,T,T,F};

constunsignedcharoperandArray3[2]={F,T};

constunsignedcharexpectedArrayNot[2]={T,F};

inti;

for(i=0;i<4;i++)

{

testOperator("Logical

AND",operandArray1[i]&&operandArray2[i],expected

ArrayAnd[i]);

}

printf("\n");

for(i=0;i<4;i++)

{

Test Operator ("Logical OR",oper and Array1 [i]||

oper and Array 2 [i],expected Array Or[i]);

}

printf("\n");

for(i=0;i<4;i++)

{

//Needs ! on operand's in case nonzero values are

different

testOperator("Logical

XOR",!operandArray1[i]!=!operandArray2[i],expected

ArrayXor[i]);

}

printf("\n");

for(i=0;i<2;i++)

{

testOperator("Logical

NOT",!operandArray3[i],expectedArrayNot[i]);

}

printf("\n");

return0;

}

Voidtest Operator (char*name, unsigned char was,

unsigned char expected)

{

char*result=(was==expected)?"passed":"failed";

 Sudipta Acharjee. International Journal of Science, Engineering and Technology, 2023,

11:4

Page 5 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

printf("%s %s, was: %X expected: %X \n",name ,result

,was ,expected);

}

The output of the above program will be

 Bitwise AND passed, was: 8 expected: 8

 Bitwise OR passed, was: E expected: E

 Bitwise XOR passed, was: 6 expected: 6

 Bitwise NOT passed, was: FE expected: FE

 Logical AND passed, was: 1 expected: 1

 Logical AND passed, was: 0 expected: 0

 Logical AND passed, was: 0 expected: 0

 Logical AND passed, was: 0 expected: 0

 Logical OR passed, was: 1 expected: 1

 Logical OR passed, was: 1 expected: 1

 Logical OR passed, was: 1 expected: 1

 Logical OR passed, was: 0 expected: 0

 Logical XOR passed, was: 0 expected: 0

 Logical XOR passed, was: 1 expected: 1

 Logical XOR passed, was: 1 expected: 1

 Logical XOR passed, was: 0 expected: 0

 Logical NOT passed, was: 1 expected: 1

 Logical NOT passed, was: 0 expected: 0

//Example of Bitwise Operators

#include<stdio.h>

#include<conio.h>

int main()

{

int a=5,b=6,c;

clrscr();

/*Swapping using bitwise operator*/

printf("\nBefore Swapping A = %d B = %d",a,b);

a=a^b; /*bitwise Exclusive OR*/

b=a^b;

a=a^b;

printf("\nAfter Swapping A = %d B = %d",a,b);

//Bitwise leftshift

a=a<<1;

printf("\nBitwise Left of A variable = %d ",a);

a=a>>1;

printf("\nBitwise Right of A variable = %d ",a);

getch();

return 0;

}

Output:

Before Swapping A = 5 B = 6

After Swapping A = 6 B = 5

Bitwise Left of A variable = 12

Bitwise Right of A variable = 6

/*This Program will compute the binary pattern of a

number*/

#include<stdio.h>

#include<conio.h>

#include<dos.h>

int main()

{

int n,i=15,j,p=1;/*Declaring Input Variables*/

clrscr(); /*Clear the screen*/

printf("\nEnter the value of N :: ");

scanf("%d",&n);

printf("\nBinary pattern of %d = ",n);

while(i>=0)

 /*While Loop for 16 bits integer scanning*/

{

j=p<<i;

delay(100); /*Propagation delay of 100 miliseconds*/

 /*Bitwise left shift ith times*/

(j&n)?printf("1"):printf("0"); /*Conditional operators

checking*/

i--; /*the binary value of j

with n*/

}/*Ternary Operator*/

getch();

return 0;

}

Output:

Enter the value of N :: 5

Binary pattern of 5 = 0000000000000101

REFERENCES
1. R Kernighan; Dennis M. Ritchie (March 1988). The

C Programming Language (2nd ed.). Englewood

Cliffs, NJ: Prentice Hall. ISBN 0-13-110362-8.

Archived from the original on 2019-07-06.

Retrieved 2019-09-07. Regarded by many to be.

2. Jump up to:a b "Tutorials - Bitwise Operators and

Bit Manipulations in C and C++". Cprogramming

.com.

3. "Exclusive-OR Gate Tutorial". Basic Electronics

Tutorials.

4. "C++ Notes: Bitwise Operators". fredosaurus.com.

5. "ISO/IEC 9899:2011 - Information technology --

Programming languages -- C". www.iso.org.

 Sudipta Acharjee. International Journal of Science, Engineering and Technology, 2023,

11:4

Page 6 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

6. "Compound assignment operators". IBM.

International Business Machines. Retrieved 29

January 2022.

External links

• Bitwise Operators

• Demystifying bitwise operations, a gentle C tutorial

	Study of Bitwise Operations in C/C++
	Assistant Professor Sudipta Acharjee
	Dept. of Computer Engineering
	GND DSEU Rohini Campus, Rohini, Delhi
	sudipta.acharjee@dseu.ac.in
	I. INTRODUCTION
	Bitwise AND &
	Bitwise OR |
	Bitwise XOR ^
	Shift operators
	There are two bitwise shift operators. They are
	• Right shift (>>)
	• Left shift (<<)Right shift >>
	Right shift operator usage

	Left shift <<
	Bitwise assignment operators

