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I. INTRODUCTION 
 

Location-based Social Media Networks (LBSNs) such 
as Yelp and Foursquare provide services to users that 
checkin at geo- graphical locations and share such 
experiences with friends. For instance, Foursquare 
reports more than 50 million users, 12 billion check-
ins and 105 million places in 20181 . Such rich 
information of social and geographical context 
provide a unique opportunity for researchers to 

study user’s social behavior [1]. Generating friend 
recommendations in LBSNs is a challenging task, 
exploiting the contextual information of users’ 
check-in behavior and mobility patterns. For 
example, when users often check-in at common 
locations and visit the same places there is a higher 
chance of them to become friends based on their 
cooccurences at such close places [2]–[4]. The 
challenge is to differentiate between real social 
friends from strangers by observing their mobility 
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patterns or, in other words, differentiate 
coincidences from real friends’ meetings [5]. In 
addition, users that are active in close regions might 
be encouraged to become friends [6]. In an attempt 
to predict social relationships, several link prediction 
methods have been proposed considering the 
available contextual information at LBSNs [1], [2], 
[5]–[8]. However, these studies try to predict whether 
two users might become friends or not, and 
formulate the friend/link prediction task as a binary 
classification problem. In practice though, end-users 
are usually interested in the top-k friend 
recommendations, that is producing a ranked list of 
potential friends [9]–[12].  
 
Instead of performing friend/link prediction, friend 
recommendation strategies are roughly divided into 
random walk-based models [13], [14] and 
collaborative filtering strategies [15], [16]. Random 
walk-based models perform random walks on the 
social graphs and rank users based on the computed 
scores. Collaborative filtering strategies are further 
divided into point wise and pairwise learning to rank 
strategies. Representative point wise models are 
matrix factorization strategies, such as SVD and non-
negative matrix factorization. Pointwise models try 
to approximate the values for an observed friendship 
as close as they can based on a point wise loss 
function, that is a reconstruction error when 
factorizing the adjacency matrix with the social 
relationships. 
 
 However, matrix factorization strategies fail to deal 
with the severe data imbalance issue due to the 
sparseness of user data, as the amount of observed 
relationships is much smaller than the unobserved 
ones. This leads to models biased towards making 
low friendship probability [15]. Instead, pairwise 
learning to rank strategies focus on the ranking 
performance directly, by considering the relative 
order of friends in the ranked list. The Bayesian 
personalized ranking (BPR) model is widely used in 
the top-k recommendation task [17]. The pairwise 
ranking criterion of the BPR model is based on the 
assumption that a user prefers the observed social 
relationships over the unobserved ones. This idea 
results in a pairwise ranking loss function that tries 
to discriminate between a small set of observed 

relationships and a very large set of unobserved 
ones. Due to such imbalance between the user’s 
observed relationships and unobserved ones, the 
BPR model uniformly samples negative examples 
from the set of unobserved relationships to reduce 
the training time. To produce top-k friend 
recommendations in LBSNs, both BPR-based [11] 
and random walk-based models [9], [12] have been 
proposed. However, these studies do not account for 
the fact that the contextual information of users’ 
check-in behavior and mobility patterns are non-
linearly correlated with users’ social relationships. 
Recently, deep learning strategies have proved to be 
an effective means for capturing non-linear 
representations for deep network embeddings [18], 
[19] and Point-of-Interest (POI) recommendations 
[20].  
 
Nonetheless, these studies do not focus on the top-
k friend recommendation task. Contribution. To 
overcome the limitations of existing methods in this 
paper we introduce a Friend-based Deep Pairwise 
Learning strategy (FDPL), making the following 
contributions: (i) we propose a multi-view non-
negative factorization strategy to capture the 
influence of the contextual information of users’ co-
occurrences and location-based user similarities on 
social relationships, generating users’ low 
dimensional latent embeddings. (ii) We learn the 
non-linear representations of the latent embeddings 
with a deep learning strategy formulating the top-k 
friend recommendation task as a deep pairwise 
learning to rank task based on the BPR framework. 
Our experiments on three benchmark datasets show 
the superiority of our proposed FDPL model over 
several baseline models.  
 
The remainder of the paper is organized as follows, 
Section II reviews the related study and in Section III 
we detail the proposed FDPL model. Finally, Section 
IV presents the experimental results and Section V 
concludes the study.  
 

II. RELATED WORK 
 
A. Friend/Link Prediction in LBSNs Brown et al. [6] 
study the influence of spatial proximity on users’ 
social relationships, that is the correlation of the 
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geographical closeness of users’ check-ins and social 
relationships. Scellato et al. [1] study the link 
prediction space of two users to check whether they 
will become friends or not, and use a semi-
supervised framework to predict new links among 
friends-of-friends and place-friends. Pham et al. [2] 
introduce an entropy-based model to first measure 
the diversity of co-occurrences and then utilize 
location entropy to weigh each co-occurrence 
differently, depending on the popularity of each 
location. Cheng et al. [7] formulate the friend 
prediction problem as a binary classification 
problem. They introduce two models, the first model 
focuses on predicting friend- ship of two individuals 
with only one of their co-occurred places’ 
information. The second model proposes a solution 
for predicting friendship of two individuals based on 
all their cooccurred places. Bayrak et al. [8] study the 
influence of place categories on friend prediction, 
assuming that friends might visit locations that 
belong to the same type of location categories e.g., 
museums, cinemas and so on.  
 
Instead of the top-k friend recommendation task, all 
the aforementioned methods focus on the link 
prediction task in LBSNs, that is a binary classification 
task trying to determine whether two users might 
become friends or not. Recently, there has been a 
surge of interest in representation learning for Social 
Media Networks. For example, DeepWalk [18] learns 
representations of nodes using a sequence of 
truncated random walks. The learned 
representations capture a linear combination of 
community membership at multiple scales. Gover et 
al. [19] introduce the node2vec model, to learn a 
mapping of nodes to a low-dimensional space of 
features that maximizes the likelihood of preserving 
network neighborhoods of nodes.  
 
They define a flexible notion of a node’s network 
neighborhood and design a biased random walk 
procedure, which efficiently explores diverse 
neighborhoods. However, both DeepWalk and 
node2vec try to learn non-linear representations of 
Social Media Networks for the multi-label network 
classification and link predictions tasks and do not 
produce top-k friend recommendations. B. Top-k 
Friend Recommendation in LBSNs The BPR model is 

a baseline model that considers a pairwise ranking 
loss function to generate top-k recommendations 
[17]. Ding et al. [15] extend the BPR model by first 
extracting deep features based on a convolutional 
neural network, and then using a deep neural 
network to produce friend recommendations. 
However, the available contextual information at 
LBSNs is ignored in both studies. Yu et al. [9] 
introduce a random walk process to find 
geographically related friends. Raw GPS data are 
analyzed to extract discriminate GPS patterns.  
 
Then, the extracted geographical information and 
the social network of friends are combined in a 
heterogeneous information network, performing 
random walks to provide friend recommendations. 
Yu et al. [10] infer social relations based on users’ 
preferences on POIs’ categories, by evaluating the 
degree to the preference coverage. Lu et al. [11] 
present the GIB-FR model, a Bayesian latent model 
that combines geographical information and user 
behaviour for friend recommendation. In particular, 
they investigate whether users who share common 
areas when they participate in social events will have 
a tendency to associate with each other. Finally, they 
formulate the recommendation task as a pairwise 
ranking problem, using the BPR framework. Bagci et 
al. 
 
 [12] build a graph based on users’ context, that is 
social relation, personal preferences and current 
location. To rank the recommendation scores of 
friends, a random walk with restart approach is 
employed. User’s visited locations in 
recommendation region are also considered to 
identify places related to friends, that is potential 
friends that have check-ins at common locations. In 
addition, local experts and popular locations are 
employed in populating the context of the user. To 
identify the local experts and popular locations in a 
certain region, a HITS-based algorithm is introduced.  
 
C. Social-based Point-of-Interest Recommendation 
Social-based recommendations account for the fact 
that people tend to rely more on recommendations 
from friends than on recommendations of 
anonymous people similar to them [21]. The 
challenge of social-based recommendations is to 
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learn the influence of friends’ selections on users’ 
preferences, as friends do not share necessarily the 
same preferences [22]. Representative social-based 
models are Social Bayesian Personalized Ranking 
(SBPR) [23] and social matrix + u u xy + factorization 
[24]. In a similar spirit, in POI recommendation, 
Location-based user similarity matrix (L). Let l ∗ and l 
∗ x y Ye et al. [25] also consider users’ social 
correlation for POI recommendation, following a 
friend-based collaborative filtering strategy. In 
particular, they produce POI recommendations 
based on similar friends, where the similarity 
between friends is calculated based on their 
common check-in POIs and common friends.  
 
In [26], a friend-based collaborative filtering be the 
locations in which users x and y are more active, that 
is the locations where they check-in most often. To 
calculate the location-based user similarity matrix, 
we account for the fact that when users are often 
active in common regions they might become 
friends. Given the geographical coordinates 
(lat,long), we first compute the angular distance δ(l 
∗,l ∗) x y strategy is also used to leverage friends’ 
check-ins, where the between locations l ∗ and l ∗ 
based on the Haversine formula2 . x y similarity 
between friends is computed based on the distance 
of their home locations. Each element of the 
location-based user similarity matrix L ∈ R n×n is 
computed as follows:  
 

III. THE PROPOSED FDPL MODEL 
 
1 L(x, y) = ∗ ∗ (3)  
A. Input Let N and L be the sets of users and 
locations, where n = |N| and m = |L| are the numbers 
of users and locations, respectively. Users’ check-in 
data are tuples in the form of (user, location, time). 
Each user u has a set of friends Au, and each location 
is associated with a pair of geographical latitude and 
longitude coordinates in the form of (lat, long). In the 
following we present the three input matrices of the 
proposed FDPL model, that is (i) the social adjacency 
matrix A, (ii) the co-occurrence matrix C and (iii) the 
location-based user similarity matrix L. Social 
adjacency matrix (A). In our evaluation datasets 
users’ social relationships are undirected and 
unweighted (Section IV-A). According to each user 

u’s social relationships in Au, we compute a binary 
adjacency matrix A ∈ {0, 1} n×n . Co-occurrence 
matrix (C). Let Lx,y ⊆ L be the set of common 
locations that user x and y have visited, with x, y ∈ N. 
First we compute the frequencies of visits that users 
x and y have checked-in at each common location l 
∈ Lx,y separately, denoted by f (l) and f (l) . Let c (l) 
be the number x y xy 1 + (δ(lx , ly ) × r) where r is the 
earth radius. As some locations l ∗ and l ∗ x y might 
have long distance, thus being uncorrelated, in our 
implementation we filter out locations with distance 
more than 200 km and set L(x, y) = 0. B. The Pairwise 
Ranking Problem Having computed matrices A, C 
and L, the goal of our model is to generate top-k 
friend recommendations for a user u ∈ N . In our 
FDPL model we formulate the friend 
recommendation problem as a pairwise ranking task 
[17].  
 
We define a friendship probability xui, where xui = 
A(u, i) denotes that users u and i are friends. Thus, we 
can define two disjoint sets, a set A + of observed 
relationships of user u, and a set A − of unobserved 
relationships. For the task of friend recommendation, 
we build a pairwise ranking model that is able to rank 
the observed friends before the unobserved ones. 
For any pair of friends i and j, with i ∈ A + and j ∈ A 
−, u u the friendship probability xui should be 
greater than xuj. To describe this relation we define 
a partial relation i >u j. For each useru∈ N the set of 
all partial elationshipsis computed of co-occurrences 
of users x and y at a common location l. Provided 
that check-ins with high time interval might be 
weakly correlated or not correlated at all, if any co-
occurrences as follows: Ru = {i >u j|i ∈ A + −  
 
happen in a long interval e.g., more than a month, 
then these co-occurrences are omitted when 
computing c (l) . Each element u ,j ∈ Au } (4) We 
define our friend recommendation task as the 
following of the co-occurrence matrix C ∈ R n×n 
follows: (l) xy is calculated as ranking problem: 
Definition (Problem). “Given the set of all partial 
relationships Ru for each user u ∈ N, the goal of FDPL 
is to C(x,y) = wl× (l) (l) (1) maximize the ranking 
likelihood probability as follows:” l∈Lx,y min{fx ,fy } 
max P(i >u j) (5) where wl is the weight of each 
location l expressing the importance of co-
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occurrences at l. To lower the chance of two users 
being at the same location by coincidence when C. 
Model Overview u∈N (i,j)∈Ru computing the weight 
wl we consider the location’s popularity pl which is 
the check-in frequency of all users at location l. c 
Thus, the weight wl is calculated as follows: z∈Lx,y pz 
An overview of the proposed FDPL model is 
presented in Figure 1. The inputs are the social 
adjacency matrix A, the co-occurrence matrix C and 
the location-based user similarity matrix L (Section 
III-A). Following a multi-view non-negative matrix 
factorization strategy, first the goal is to wl = l (2) 
jointly learn the influence of co-occurrences and 
locationbased user similarities on social relationships 
and compute a According to  
 
Eq. (2) popular locations with high values of pl are 
downweighted, expressed by low weights wl when 
computing matrix C(x, y) in  
Eq. (1). user latent matrix U ∈ Rn×d of the social 
adjacency matrix A, 
2https://en.wikipedia.org/wiki/Haversine formula p 
u F F F we formulate the multi-view joint factorization 
problem as the following joint loss function: minL = 
LA + λCLC + λLLL (6) Θe where the three loss 
functions LA, LC and LL correspond to the joint 
factorizations of the input matrices A, C, and L. Θe is 
the parameter set of the joint loss function L, and 
parameters λC and λL regularize the respective loss 
functions in Eq. (6). Note that in Eq. (6) a 
regularization parameter for LA is omitted, as matrix 
A is the main adjacency matrix with users’ 
relationships in the friend recommendation task.  
 
The problem of the joint loss function in Eq. (6) is 
similar to the Multi-View Non-negative Matrix 
Factorization (Multi-NMF) problem of [27]. Multi-
NMF tries to bring the latent matrices of different 
views/matrices as close as possible to a common 
consensus matrix. As the three input matrices are 
symmetric and coupled at the user dimension, we 
have a consensus matrix U∗ ∈ Rn×d, with d being the 
low-dimensional latent Fig. 1. Overview of FDPL. For 
each user u, friends i ∈ A +, and j ∈ embeddings. 
While jointly factorizing the three input matrices, the 
goal of Multi-NMF is to minimize the three 
reconstruction − Au denote an observed and an 
unobserved relationship, respectively. The 

dimensions of the bottom layer H0 are equal to the 
d dimensional embeddings errors ||U(v) − U∗||2 of 
the consensus matrix U∗ and the of multi-view NMF. 
respective latent matrices U(v) ∈ Rn×d , with v = 1,... 
,3 in our setting. We calculate the loss functions LA, 
LC and LL of Eq. (6) as follows: with d being the low 
dimensional embeddings. Then, in our • LA = 
||A−UU⊤||2 +γA||U−U ∗||2 , whereU ∈Rn×d is 
architecture presented in Figure 1, we perform Deep 
Pairwise Learning to generate friend 
recommendations. As defined in our pairwise 
ranking task in Eq. (5), for each user u we have both 
the left and right user latent matrix, when factorizing 
the symmetric matrix A. The second term of LA 
denotes the reconstruction error of U and the 
consensus matrix pairs of partial relations (i,j) ∈ Ru. 
We consider the user U∗ ∈Rn×d ⊤ 2 ∗ 2 latent vectors 
Ui ∈ Rd , Uu ∈ Rd and Uj ∈ Rd , that is the • LC = ||C 
− UCUC ||F + γC||UC − U ||F . Since C is i-th, u-th and 
j-th rows of U. Then, we design three neural 
networks, where each latent vector Ui, Uu and Uj is 
provided to the respective neural network.  
 
Given h hidden layers, we symmetric, the left and 
right user latent matrices UC ∈ Rn×d are equal. • LL 
= ||L − ULU ⊤ 2 ∗ 2 L ||F + γL||UL − U ||F. The 
locationfirst try to capture the non-linear 
representations H (q) , H (q) based user similarity 
matrix L is also symmetric, hence i u Rn×d and H (q) 
of Ui, Uu and Uj in each neural network separately, 
we keep only the user latent matrix UL ∈ . j with q = 
1,... ,h. We calculate the friendship probabilities xui 
and xuj by combining the last hidden layers H (h) , H 
(h)  
 
The regularization parameters γA, γC and γL control 
the reconstruction errors of the respective user 
latent matrices i u ∗ and H (h) with a sigmoid function 
σ(x) = 1/(1+e −x ). Finally, of each loss function and 
the user consensus matrix U . To j in the output layer 
we predict the probability of the partial relation P (i 
>u j). In the remainder of the Section, we present a 
multi-view non-negative matrix factorization 
strategy in Section III-D, and a Deep Pairwise 
Learning strategy in Section III-E. D. Users’ Low 
Dimensional Latent Embeddings To learn the 
influence of users’ co-occurrences and 
locationbased user similarities on social 
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relationships, we formulate a multi-view joint 
factorization problem. In particular, by factorizing 
the social adjacency matrix A we try to capture the 
friends-of-friends relationships. At the same time, by 
factorizing the co-occurrence matrix C and the 
location-based similarity matrix L we try to learn the 
users’ associations based on their co-occurrences at 
common locations and their activities in 
geographical close regions, respectively. Hence, 
reduce the complexity of our model, in our 
implementation we set the regularization 
parameters γA, γC and γL to 0.01. Summarizing, the 
parametersetΘe ofthe joint loss function L in Eq. (6) 
is set to Θe = {U, UC , UL, U ∗}. However, the 
minimization problem of Eq. (6) is not convex with 
respect to all the variables of the parameter set Θe.  
 
To solve this problem, we follow an alternating 
optimization strategy, that is update one variable 
while fixing the remaining variables of Θe. According 
to the learning strategy of multiplicative rules of [27], 
we compute the update rules of each variable for the 
alternating optimization algorithm. Due to lack of 
space we omit here the computations of the update 
rules, as they can be computed in a similar way as in 
[27]. By solving the minimization problem of Eq. (6), 
we compute the user latent matrix U of the social 
adjacency matrix A, by also accounting for the 
auxiliary information of users’ co-occurrences and 
activities in geographical close regions. u u u E.  
 
Deep Pairwise Learning Next, in our architecture of 
Figure 1 we adopt a Deep Pairwise Learning to rank 
technique to produce top-k friend 
recommendations. Having computed the user latent 
matrix U with the low d-dimensional embeddings, 
for each user u ∈ N we consider the partial relations 
(i,j) ∈ Ru based on Eq. (4). Then, the low d-
dimensional embeddings, that is the latent vectors 
Ui, Uu and Uj, are provided to the respective three 
Output. At the output layer of Figure 1, we use the 
hidden representations and the biases of the last 
hidden layers, that is the h-th layers of the three 
neural networks, which are then combined to 
compute the friendship probabilities xui and xuj 
(Section III-B). At the output layer we use the sigmoid 
function σ to ensure that the friendship probabilities 
xui and xuj are in the range of [0, 1]. The friendship 

probabilities xui and xuj are calculated as follows: 
neural networks, as shown in Figure 1. (h) ⊤ H (h) (h) 
h) Hidden layers. When training the FDPL model we 
aim to xui = σ(Hi u + bi + b ( ) ⊤ (9) maximize the 
likelihood in Eq. (5), hence the loss function of xuj = 
σ(H (h) H(h) (h) FDPL becomes: j u + bj + b (h) ) minL 
= − Θb P(i >u j) + λ||Θb||2 (7) Given that xui and xuj 
∈ [0,1], at the output layer the partial relation 
between xui and xuj is computed as P(i >u j) = 
(xui−xuj)/2+0.5.Then, based on the computed 
probability u∈N (i,j)∈Ru Θb is the parameter set, with 
Θb = P(i >u j), the prediction of an unobserved 
relationship (u,i) is calculated by forwarding its low 
d-dimensional embedding {W(q) (q) (q) (q) (q) (q) i 
,Wu ,Wj ,bi ,bu ,bj }, ∀q = 1,... , h, where h is the 
number of hidden layers used in the three neural Ui 
on the respective neural network as shown in  

 
Fig. 1. Overview of FDPL. For each user u, friends i ∈ 

A +, and j ∈ 
Figure 1 and then computing the friendship 
probability xui. The final top-k networks of Figure 1. 
Matrices W (q) , W (q) and W (q) are friend 
recommendations are generated by ranking the 
unobi u j the weighting matrices of the q-th hidden 
layers to produce the deep learning representations 
of the latent vectors Ui, Uu served social 
relationships based on the probability P(i >u j). 
Model training. In our implementation we used 
Tensorand Uj. Variables b (q) b (q) ,b (q) denote the 
respective biases flow4 .  
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We computed the model parameters Θb via 
backpropi u j of the q-th hidden layers of each neural 
network. As the size of hidden layers is important, in 
our architecture the bottom layer is the widest and 
each successive layer has a smaller number of hidden 
units. This way it learns more abstractive features of 
the d-dimensional embeddings and consequently 
better captures the non-linear correlations of users’ 
social relationships with the auxiliary information of 
users’ co-occurrences and activities in 
geographically close regions. For each neural 
network we implement the tower structure, halving 
the layer size for each successive layer. Hence, to 
implement the tower architecture we add the 
constraint of 2 h ≤ d for the number of hidden layers 
h and the low d-dimensional embeddings of Multi-
NMF. For the hidden layers there are several choices 
of activation functions, like sigmoid, hyperbolic 
tangent tanh(x) and rectifier linear unit function 
ReLU (x). In our implementation, we used ReLU 
activation functions, with ReLU(x) = max(0, x), as they 
are non-saturated3 , well-suited for sparse data and 
making the model less likely to be overfitting [28]. 
Using ReLU activation functions, ∀q = 1,... ,h, the q-
th hidden layers of the three neural networks 
produce the respective representations as follows: 
agation with stochastic gradient descent. In 
particular, we employed mini-batch Adam [29], 
which adapts the learning rate for each parameter by 
performing smaller updates for frequent and larger 
updates for infrequent parameters.  
 
In each backpropagation iteration we performed 
negative sampling to randomly select a subset of 
unobserved social relationships as negative 
instances j ∈ A −. In our implementation we sampled 
five negative samples for each positive/observed 
sample, and set the batch size of mini-batch Adam 
to 512 with a learning rate of 1e-4. Finally, to account 
for the fact that the initialization of the model 
parameters Θb plays an important role for the 
convergence and performance of our model, we 
followed a pretraining strategy [30]. By applying 
single-view factorization of A and producing the 
respective latent matrix U, we first trained our model 
only using the social relationships in A with random 
initializations until convergence - ignoring the 

auxiliary information in matrices C and L. Then, we 
used the trained parameters as the initialization of 
our model with the auxiliary information of users’ co-
occurrences and location based user similarities.  
 

IV. EXPERIMENTS 
 

Evaluation Setup H (q) (q) (q−1) (q−1) i = 
ReLU(Wi Hi +bi ) Datasets. In our experiments, 
we use three publicly avail- H(q) (q) (q−1) (q−1) 
able datasets from Brightkite5 , Gowalla6 and 
Foursquare7 . The u = ReLU(Wu Hu +bu ) (8) 
Brightkite dataset was collected during April 
2008-October H (q) (q) (q−1) (q−1) j = ReLU(Wj 
Hj +bj ) 2010 and consists of 58,228 users, 
214,078 social relations, 4,491,144 check-ins and 
772,788 locations. The Gowalla with H (0) = Ui, H 
(0) = U and H (0) = Uj. i u u j 3The saturation 
problems occurs when neurons stop learning 
and their output is near either 0 or 1, a problem 
that can be suffered by the sigmoid and tanh 
functions [28]. 4http://www.tensorflow.org 
5http://snap.stanford.edu/data/loc-
brightkite.html 
6http://snap.stanford.edu/data/loc-
gowalla.html 
7http://www.public.asu.edu/∼hgao16/Publicati
ons.html  
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