
Hussain Shaik,2023, 11:6 

ISSN (Online): 2348-4098 

ISSN (Print): 2395-4752 

 

 
 

© 2023HussainShaik. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly credited. 

Deep Forest-Based Automatic Generation  

Control Strategy  
Research Scholar Hussain Shaik 

Electrical and Electronics engineering  

Jawaharlal Nehru Technical University, Kakinada, India

 

I. INTRODUCTION 
 

Power systems balance power generation and load 

demand to function steadily and safely. Maintaining 

the relative balance between load and power 

generation is challenging due to variations in load 

demand, which has an impact on operational safety 

and system frequency.  

 

Countries all over the world are actively pushing the 

development of renewable energy, which is 

represented by wind power and photovoltaics, to 

address the shortage of fossil fuels and the 

environmental pollution crisis. Modern power 

systems emphasize wind and photovoltaic 

penetration on a large scale, which has an impact 

on conventional power plants' ability to provide 

system services [1]. Large-scale grid integration of 

intermittent new energy sources like solar and wind 

creates uncertainty in active power production, and 

the output volatility of these sources impacts the 

power system's frequency stability. For the purpose 

of adjusting to the demands of the grid, it is  

 

 

 

necessary to thoroughly examine, optimize, and 

enhance the current automatic power generation  

control schemes. Power systems employ automatic 

generation control (AGC) to adjust the system 

frequency to a predetermined value, to keep the 

contact line power exchange value to a planned 

value and to keep the overshoot and stabilization 

time within acceptable limits [2].  The main purpose 

of automatic generation control is to maintain 

frequency and power system stability through the 

use of the load frequency control (LFC) method [3].  

 

Based on the control technique, research 

methodologies for AGC systems may be broadly 

classified into two groups: direct control of AGC 

and optimization modelling method. Numerous 

academics have undertaken pertinent study in this 

regard.Improving the traditional proportional-

integral (PI) control strategy or optimizing the PI 

control parameters is the main goal of the study of 

direct control strategies for AGC. A unique control 

design for an LFC of a hydro-hydro interconnected 

system based on joint actions of fuzzy logic and 
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proportional-integral-derivative (PID) was proposed 

in the literature [4]. PSO was used to effectively 

optimize the system, yielding a Fuzzy-PSO-PID. To 

coordinate FLAGCs of all areas, the literature [5] 

presented a simultaneous coordination strategy 

based on particle swarm optimization (PSO) in 

conjunction with real coded genetic algorithms 

(RCGAs).. A fuzzy-assisted PID controller parameter 

tuning technique was presented in the literature [6]; 

it was based on a combination of an enhanced 

firefly optimization algorithm and hIFA-PS, a 

pattern search technique, is used to control a five-

area power system's frequency. The purpose of the 

gravity search technique was to improve the 

response time in the event of a frequency 

divergence across multi-area power systems [7].  

 

In the literature, a hybrid PID-fuzz controller for the 

best automatic generation control of a two-area 

linked power system was proposed [8]. The 

simulated annealing (SA) technique is used to 

create the controller parameters. The AGC with 

various renewable resources and an enhanced 

cascade controller was suggested in the literature 

[9]. To enable controller parameter optimization, a 

new hybrid technique based on the Improved 

Teaching Learning by Optimizing Differential 

Evolution (hITLBO-DE) algorithm is applied. A fuzzy 

predictive-proportional integral derivative (FP-PID) 

controller strategy for automatic generation 

controller was proposed in the literature [10]. Using 

the time multiplied by squared error (ITSE) as the 

objective function, the grasshopper optimization 

algorithm (GOA) was used to adjust the FP-PID 

controller's parameters. 

 

In the modelling control strategy aspect, an AGC 

strategy model based on modern interior point 

theory for interconnected grids under control 

performance standard (CPS) was proposed in [11]. 

The model takes the optimal CPS1 index as the aim 

function, considers system constraints such as 

system power balance constraints and unit 

regulation capacity, and solves for an optimal set of 

AGC regulation commands, and shows the 

practicality of the proposed model with examples. 

The dynamic optimal scheduling model for AGC 

units was proposed in [12], and by adding the 

constraint relationship between the interconnection 

system frequency and the contact line power, the 

model of [11]'s constraints characterizing the unit 

regulation characteristics are enhanced. In order to 

minimize the power discrepancy between the 

scheduling orders and the actual power regulation 

output, an optimal mileage technique (OMD) based 

AGC scheduling was presented in [13]. This method 

optimizes the allocation of real-time overall AGC 

scheduling commands among various AGC units. In 

[14], a brand-new fast distributed auction-based 

algorithm (FDAA) with random forest assistance was 

created for coordinated regulation in sizable 

photovoltaic power plants in response to AGC 

signals.  

 

The paper in [15] presented a unique framework 

based on proximal. Due to the tight control 

constraints provided, the optimization modelling 

method's control strategy suffers from non-

convergence of the model and poor timeliness, 

making it difficult to implement real-time AGC and 

real-time response to area control error. However, 

the direct control technique is a better option 

because the power system's actual load varies 

quickly and with huge amplitude variations, which is 

a typical non-stationary strongly stochastic process. 

Research teams from both domestic and foreign 

universities are focusing on the study and use of 

machine learning in AGC at the same time. Six 

categories can be used to categorize machine 

learning: associative learning, empirical inductive 

learning, 

 

Deep learning is associative learning, as are analogy 

learning, analytical learning, genetic learning, and 

reinforcement learning. To provide dependable and 

secure online monitoring for automated guided 

vehicles, the literature in [16] suggested an 

integrated IoT architecture based on developing 

deep neural networks (DNNs) and rectifying linear 

units for handling cyberattacks (AGVs). A weight 

initialization technique for neural networks with 

asymmetric activation functions was presented in 

the literature [17] and has the potential to enhance 

the network's performance. The literature [18] 

suggested a clever combination of a fresh IoT 

platform with profound. A deep reinforcement 
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learning-based control strategy for AGC was 

proposed in the literature [19]. It primarily uses 

multiple neural networks to fit the system's 

behavioral policies for value assessment and 

enhances the effectiveness and caliber of AGC 

exploration as well as the system's control 

performance by introducing an enhanced behavior-

criticism method with incentive heuristics. Deep 

learning has found rich applications in different 

domains in power systems. The transition from 

active deep learning predictors to data-driven deep 

learning predictors has been essentially 

accomplished with the advent of deep learning [20], 

[21]. This paper offers a fresh perspective on data-

driven AGC strategy research, given the swift 

advancement of data-driven methodologies. 

Developing deep learning has produced better 

results than shallow models in recent years.. 

 

Zhou and Feng [26] introduced the deep forest 

algorithm, a novel approach for decision tree 

integration, in this context. A variation of random 

forest deep learning, deep forest (gcForest) offers 

improved parameter robustness and a quicker 

training rate.The traditional PI control [27] and the 

discrete Fourier transform (DFT)-based AGC real-

time control strategy [28] in the direct control 

approach are chosen as the two strategies for deep 

forest network learning in this research based on 

the aforementioned examination of the two AGC 

control methods. The controller with better 

performance is chosen for each assessment period 

as the controller for that period's power deviation 

regulation. When the controlled data set is 

generated by offline control, PI control is chosen in 

scenarios with sharp deviation fluctuations in area 

control error, and DFT control is chosen in scenarios 

with moderate deviation fluctuations.  

 

To enhance the AGC control method, this research 

suggests an automated power generation control 

technique based on deep forest algorithms. 

Combining the features of various AGC approaches 

to produce superior control datasets: In order to 

choose the control strategy with the best control 

performance and make adjustments, the deep 

learning approach requires the help of enough 

data. the area control error in various assessment 

cycles, to fully utilize the performance of various 

control methods in their respective favorable 

working environments, and to effectively combine 

the features of both DFT and PI control strategies to 

produce superior control datasets 

1. A fresh take on deep learning: a deep forest 

algorithm-based approach for automatic 

generation control is put forth. This approach 

relies on deep learning techniques, which, 

through training with massive area control error 

(ACE) data, directly create mapping relationships 

between known inputs and total regulation 

commands. This solves the non-convergence 

issue with complex AGC modelling control 

methods and improves applicability in handling a 

range of grid operating conditions. 

 

2. The control method of the deep forest approach 

is based on the traditional AGC strategy. The 

deep forest control technique splits the 

traditional AGC procedure into two simpler steps: 

figuring out whether the unit is acting and 

figuring out the precise overall regional 

regulation power. A triple classification network 

and two regression networks are used to build a 

deep learning model for the AGC strategy, and a 

deep forest-based AGC real-time control 

approach is suggested 

 

3. The structure of the paper is as follows. The 

fundamentals of AGC are presented in Section II, 

along with the performance standards for AGC. 

The deep forest algorithm's guiding concepts are 

explained in Section III. In Section IV, the creation 

of the control dataset, the reasoning for choosing 

the network feature variables, and the deep 

forest-based AGC procedure are all explained. 

Lastly, Section V conducts simulations, and 

Section VI wraps up the paper. 

 

II. PRIMITIVE AGC CONTROL 

PRINCIPLES 
 

1 Agc Principle 

In order to minimize losses and balance the total 

power generated and the total load demand, 

automatic generation control is a control approach 

[29]. In traditional AGC control, the regional grid 
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dispatch center uses the following formula to 

determine the current power imbalance, or area 

control error (ACE), in real time and then uses that 

information to regulate the frequency regulation 

units in order to minimize or eliminate the 

deviation: 

EACE = β∆f + ∆PT (1) 

where FT is the contact line exchange power 

deviation, f is the frequency deviation, and β is the 

regional frequency deviation factor. 

AGC control is a closed-loop feedback control 

process, the input variables are frequency deviation 

∆f and contact line exchange power deviation ∆PT 

and other signals generated after ACE, according to 

a certain AGC control strategy to get the Frequency 

regulated generator sets new power ∆PG, and then 

adjust the system frequency and contact line 

exchange power deviation, the control process is 

described in Fig. 1: 

The load and power supply architecture of the AGC 

are two examples of the many variables that might 

affect its real-time control process. 

 

 
Figure 1. Description Of Agc Control Process. 

 

The demand on system control is increased by the 

large-scale wind power and photovoltaic 

connections to the grid, which are volatile and 

intermittent, and by the periodic fluctuations in 

loads with different characteristics. As a result, the 

system requirements cannot be satisfied by the 

conventional AGC. In order to combine the benefits 

of various control strategies, deep forest model 

learning is used in the field of automatic power 

generation control strategies. This allows the 

system to make an intelligent decision about which 

controller will work best for unit regulation under 

various operating conditions. 

 

2.Assessment 

Since the 1960s, the AGC strategy's control goal has 

been to ensure that the ACE crosses zero. To this 

end, the North American Electric Reliability Council 

(NERC) has chosen the A1/A2 standard as the AGC 

performance evaluation index. However, inter-

regional frequency support is not supported by this 

standard since it has an excessive number of 

needless modifications. The NERC-proposed 

control performance standard is more scientific and 

addresses the shortcomings of the A standard. The 

CPS standard gives additional leeway for the 

coordinated control of AGC by easing the 

requirement that "the ACE must pass zero within 10 

minutes." The CPS1 and CPS2 standards are part of 

the CPS standard. The relationship between ACE 

variation and frequency deviation is counted using 

CPS1, and the ACE amplitude change is counted 

using CPS2, which is used to assess how well the 

control region can manage the tie line's power flow 

deviation. The CPS standard reduces the frequency 

of frequency regulation units, gives more weight to 

the long-term advantages of the AGC system, and 

uses a more reasonable and scientific combination 

of the control limit and the regional frequency 

deviation coefficient. It also does not require the 

area control error to cross zero frequently. 

in which ∆FAVE−min is the average deviation of the 

one-minute frequency and EAVE−minis the average 

value of the one-minute ACE; ε1 Type equation 

here.is the root mean square value of the one-

minute average of the deviation of the actual 

frequency from the standard frequency of the 

interconnected grid over a one-year period; Bi is 

the frequency response coefficient (MW/0.1Hz) for 

control zone I and n is the total number of minutes 

in the assessment period. 

The 10-minute average of the ACE, or the tidal 

deviation of the contact line, needs to be controlled 

to a specific limit value. CPS2 is used to evaluate 

the control area's ability to achieve this goal. The 

following is how its indicator value is expressed: 

 

where N is the assessment period, ∆f t is the 

frequency deviation, ∆Pt is the tie-line power error, 

ε10 is the standard frequency deviation and mean 
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square value of the average frequency based on 10 

minutes per year, B is the control area's frequency 

coefficient, and Bs is the interconnected grid's 

frequency deviation coefficient. In light of the 

Guangxi grid's current state, the CPS assessment is 

qualified when 200% Kcps1 or 100% Kcps1 and          

Kcps2 ≤L10, where the average ACE limit L10 is 

taken as 100. 

 

III. DEEP FOREST ALGORITHM 
 

The deep forest method, a supervised machine 

integration learning process based on the random 

forest (RF) algorithm, was made possible by the 

quick development of deep learning and deep 

neural networks. An integrated approach based on 

decision trees in both depth and width is called 

deep forest. The two stages that make up the entire 

method are cascade forest and multi-grained 

scanning. The key component of the deep forest 

algorithm is the cascade forest. 

 

1.Decision Tree 

The RF algorithm for regression and classification 

was proposed by Breiman [31]. Random forests use 

several decision trees that are based on Bag- ging's 

integrated learning technique [32]. The final 

classification is determined by voting on each 

decision tree's result once the samples to be 

classified have been input. In order to conduct the 

classification, the Random Forest algorithm learns 

the training classification rules on a given sample 

without requiring any prior knowledge. 

 

2.Random Forest Algorithm 

The RF algorithm for regression and classification 

was proposed by Breiman [31]. Random forests use 

several decision trees that are based on Bag- ging's 

integrated learning technique [32]. The final 

classification is determined by voting on each 

decision tree's result once the samples to be 

classified have been input. In order to conduct the 

classification, the Random Forest algorithm learns 

the training classification rules on a given sample 

without requiring any prior knowledge. 

 

3. Cascade Forest Structure 

The model used in this paper is the latest Deep 

Forest (DF21: A Practical Deep Forest for Tabular 

Datasets). DF21 is an implementation of Deep 

Forest 2021.2.1 with a cascade level with the 

original input feature vectors to form a set of 

vectors as the input of this level, so that the original 

features can be maintained and new feature vectors 

can be formed, which is a reinforcement of the 

original features and avoids the loss of feature 

information. The evaluation level is the highest 

level, where the generated category vectors are 

averaged and the sample classification result is 

taken from the category with the maximum value. 

Each stage of the training process uses k-fold cross 

validation, which involves training the training data 

k-1 times, generating and averaging k-1 category 

vectors, and using the averaged values as 

augmented feature vectors for the subsequent level 

in order to reduce the possibility of over-fitting the 

model. When the number of training layers 

increases, the Deep Forest algorithm automatically 

decides the number of levels in the cascade forest. 

It then utilizes a validation set to test performance 

and stops adding more cascade layers when the 

model accuracy performance no longer improves. 

 

Different forests are used in each layer in deep 

forest models, a structure that improves the 

model's fault tolerance and generalization. With a 

random forest model and a fully random forest 

selected as the two forests for each layer by default, 

deep forest can have any number, kind, or 

combination of forests. Every tree in an entirely 

random forest selects a random characteristic to be 

a split node in the split tree, and the tree expands 

until every leaf node is split into only one category 

or ten samples. In a standard random forest, each 

tree randomly chooses sqrt (k) candidate features (k 

is the input feature dimension, or the total number 

of features) and filters the split nodes using the Gini 

coefficient. 

 

IV. AGC STRATEGY BASED ON DEEP 

FOREST MODEL 
 

Anaconda 4.7 PyCharm2021 is the experimental 

platform utilized in this work. The most recent 

version of deep forest (DF21), made public by 
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Professor Zhou Zhihua, is utilized to train the deep 

forest model within the TensorFlow deep learning 

framework. To make the experimental 

implementation less challenging, the machine 

learning tool functions found in the scikit-learn 

package are called upon. 

 

1.Experimental Data &Data Analysis 

Using a sampling interval of two seconds per day 

and 43,200 sampling points per day, the 

experiment in this research picks data from a 

provincial power grid for five months, from June to 

August and October to November of 2018, 

following restoration, as the controlled data.. The 

controlled data combine with the DFT control 

strategy and PI control strategy, and the control 

strategy with the better effect is selected as the 

controller to calculate the total regulation   

command in each control cycle to generate the 

final control dataset, and the deep forest model is 

trained. 

The control process is depicted in Fig. 3. 

The specific steps are as follows: 

 

Finding out if the unit follows the state 

classification model is the main goal of region I. The 

device can only accelerate and decelerate for 40 

seconds at a time, and every 20 sample points, a 

control calculation is done. In order to assess the 

condition of the AGC unit, the four characteristic 

parameters at the time of judgment—∆f, area 

control error (ACE), CPS1 and CPS2—are made up 

of raw data that complies with the requirements of 

the deep forest network's input data and is fed into 

the state classification model. The unit's control 

state, either 1 (growing state), 1 (decreasing state), 

or 0, is the output of the state classification network 

(constant state). The AGC unit operates if the 

output is 0. 

 

Determining the overall regulated power value is 

the main goal of area II. To obtain the regional total 

regulation power prediction data, the initial sample 

input to the state classification network is again 

input into the incremental regression model, with 

the output result of the state classification network 

set to 1 (incremental state). In this control cycle, no 

order is placed when PR < ε. When PR is greater 

than ε, the unit is operated at a faster rate based on 

the anticipated data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Agc Control Flow Based On Deep Forest 

 

Table 2. Qualified Points Of Each Control Method In 

December. 

Status of 

assessment points Control 

strategies 

Min. 

Qualified 

points 

No. of 

unit 

actions- 

Daily 

average 
144 

133-

143 
<135 

3 15 12 Without 113 / 

10 16 4 With PI 127 1167 

10 16 4 With DFT 126 772 

11 16 3 
With DF 

network 
128 462 

 

2.Analysis of Experimental Results 

The findings of the simulation experiment, which 

was run on the restored data of a provincial grid for 

the first thirty days in December 2018, are displayed 

in the table below for the uncontrolled control, PI 

control, DFT control, and deep forest network 

control. The CPS criteria evaluate the impact of AGC 

control every ten minutes, with 144 assessment 

points allocated throughout the day for the CPS1 

and CPS2 criteria. Below Table 2 and Figure 4 are 

the points that each control method received in 

December. 
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FIGURE 4. Each control method qualified points in 

December. 

 

TABLE 3. Simulation of each control method on 

December. 

Quali

fied 

point

s 

Contr

ol 

strate

gies 

Qualif

ied 

rate 

% 

Unit 

actions 

number 

Positi

ve 

regul

ation 

(MWh

) 

Negat

ive 

regul

ation 

(MWh

) 

139 

With 

PI 96.53 1254 81.51 

-

81.51 

140 

With 

DFT 97.22 817 18.04 

-

18.09 

142 

With 

DF 

netw

ork 98.65 542 20.39 

-

20.39 

 

According to TABLE 2 and Fig. 4, the number of 

orders for DFT control is much smaller than that for 

PI control, and the deep forest network improves 

the average number of pass points per day by 

learning to fuse the advantages of these two 

control strategies. When compared to PI control 

and DFT control alone, the deep forest network 

control lowers the average daily number of orders 

by 60.41 percent and 40.16 percent, respectively, 

and the overall regulatory effect is superior. To 

further validate the efficacy of the approach 

presented in this research, use the real-time 

operating data from December 16, 2018, which has 

43200 sample points spread over a 2 s sampling 

period, for simulation analysis. TABLE 3, Fig. 5 

display the control impacts of the three control 

procedures during the course of the day on 

December 16. 

 

Figure 5. Cps1 Comparison Chart. 

 

 

TABLE 4. Control situation of 22:10-22:20. 

 

CPS1 
CPS2 

No. of 

actions 

Control 

strategies 

1.69 14.8 12 With PI 

1.76 11.8 9 With DFT 

1.93 3.37 7 
With DF 

network 

 

Table 3, Fig. 5 show that the deep forest network 

control strategy had 142 qualified points for the 

day, a qualified rate of 98.65 percent, 542 actions 

ordered by units, and 20.39 MWh and -20.39 MW 

of positive and negative unit miles throughout the 

day. Of these three control method effects, the 

Deep Forest Network control method had the most 

qualified points. During the 144 evaluation intervals 

of the day, the deep forest control strategy 

commands less frequently than the other two 

control techniques. The PI control method's 

enormous regulation volume and order volume 

verify the strategy's significant overshoot. The 

number of orders and the regulation volume of the 

DFT strategy are much lower than those of the PI 

control strategy because of the refinement of the 

total regulation power. Combining the benefits of 

both, the deep forest network control approach 

presented in this research can guarantee stable 

system operation while increasing the number of 

qualified spots with fewer commands and 

regulation amounts. 
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A standard ten-minute detail analysis is chosen on 

December 16 between 22:10 and 22:20. With 16 

ordered points, the 10min is the 134th evaluation 

point of the day. Figs. 6, 7, and TABLE 4 display the 

outcomes of the ordered circumstances and the 

control impacts of the three control procedures. 

FIGURE 6. 22:10-22:20 Change in ACE before and  
after control. 

 

Figure 7. 22:10-22:20 Cps1 Change Before And 

After Control. 

 

From TABLE 4, the number of orders of the deep 

forest network control method is smaller than that 

of the PI control strategy and the DFT control 

strategy, and its regulation power value is similar to 

that of the DFT control strategy and much lower 

than that of the PI control strategy, indicating that 

its control effect is better. Fig. 6 shows that the 

working conditions of this assessment cycle are 

smoother and milder, and the regional control 

deviation does not fluctuate much during the 

period. In the latter portion of the period when the 

area is not under control, as demonstrated by Fig. 7, 

the value of CPS1 is less than 1, indicating a failed 

assessment period. Within the parameters of the 

assessment pass, the deep forest network control 

continuously directs the deviation to be adjusted 

and manages the CPS indicator. 

 

V. CONCLUSION  
 

The power system must optimize and enhance the 

currentautonomous generation control method in 

light of the widespread grid integration of wind, 

solar, and other renewable energy sources as well 

as the rise in impact loads. This research proposes a 

network control strategy based on the Deep Forest 

algorithm, which is based on the classic PI control 

strategy and DFT control strategy. The following 

results are acquired by simulation. The strategy can 

complement the dominant operating conditions by 

learning from the excellent control data set that has 

been modulated by both control strategies.With 

fewer orders and better regulation precision,  this 

network control technique may successfully 

regulate the ACE deviation within the evaluation 

range while avoiding frequent actions. Deep forest 

networks for AGC can more successfully lower the 

unit's frequency regulation capacity and increase 

economic efficiency when compared to PI control 

techniques and DFT control strategies. 

 

This paper's approach to AGC scheduling is based 

on a deep forest network algorithm. The grid 

operating modes and the quantity of the dataset 

used to train the deep forest model are 

constrained. In the future, the training of the 

network will become more sophisticated due to the 

expansion of the dataset, the use of additional 

control strategies to compensate for the dataset's 

unqualified cycles, and increased study of the 

control strategy of an autonomic generation control 

system incorporating new energy sources. 
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