
Sourabh Sethi. 2023, 11:6

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

International Journal of Science,
Engineering and Technology

An Open Access Journal

© 2023 Sourabh Sethi. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Analyzing and Designing a Full-Text Enterprise Search

Engine for Data-Intensive Applications
Sourabh Sethi, Sarah Panda, Ravi Karmuru, Tarun Tayal

Department of Computer Science & Information Systems

Birla Institute of Technology and Science, Pilani, Rajasthan, India

I. INTRODUCTION

Within the SQL framework, we typically construct a

B+ tree encompassing all posts. This method is

effective for smaller posts, typically comprised of

single words or two words. However, for larger text,

the necessity to navigate through every tree node

becomes time-consuming. For instance, if someone

searches for "job posting," seeking all posts

containing either "job posting" or "job post" in their

body, the query would look something like the

following:

SELECT * FROM posts WHERE content LIKE “%job

post%”.

The provided query would result in a complete table

scan, necessitating the examination of every row and

conducting a string search within each post content.

With N rows and M characters, the time complexity

becomes O(N*M^2). This is not an optimal scenario

and could potentially lead to performance issues,

possibly causing a system like LinkedIn to experience

downtime.

1. Issue with No SQL Databases

Encountering a comparable challenge would occur

when employing a NoSQL database. In a key-value

store or column-family store, one would need to

traverse through each row and search for matching

values or columns, a process that could be extremely

time-consuming. The same issue applies to a

document store.

II. PROPOSED DESIGN

To address this issue, we can employ the following

data structures: Hashmap or Trie. In the case of a

Hashmap, the key-value pairs can be structured as

follows: the key represents the word to be searched,

and the value contains a list of document (or review)

IDs where the queried word is present. This

arrangement is commonly known as an INVERSE

INDEX. [1] APACHE LUCENE implements a similar

concept, where each entry, such as an entire post, is

referred to as a document. The following steps are

involved in this process:

Abstract- The process of designing and constructing an Enterprise Search Engine comes with numerous

challenges. One major hurdle is creating a search feature capable of efficiently navigating through an

extensive volume of generated data, a task that SQL databases have struggled with over the past decade.

In SQL, the conventional approach involves constructing a B+ tree encompassing all posts. However, this

method is effective primarily when dealing with smaller posts (single or double words). For larger text, the

need to traverse each tree node becomes time-consuming. NoSQL databases encounter a similar issue; in

key-value or column-family stores, searching for matching values or columns involves navigating through

every row, a process that can be quite prolonged. The same holds true for document stores. In this research

article, we delve into the challenges associated with implementing an enterprise search engine and

propose potential solutions.

Keywords- Elastic search Stack, Apache Solr Search Stack, Apache Lucene, DXPs, and Digital Experience

Platforms.

Sourabh Sethi. International Journal of Science, Engineering and Technology, 2023, 11:6

Page 2 of 4

The initial step involves Character Elimination, where

characters such as "a," "an," "the," etc., are removed.

Despite its name, this phase also encompasses word

elimination. The second step is Tokenization, wherein

the entire post is segmented into individual words.

The third step, Token Indexing, breaks down all

tokens into their root words, a process also known as

stemming. For instance, the words "ran" and

"running" are reduced to the root word "run," and

"crashed" and "crashes" are stemmed to "crash."

Moving on to the fourth step, Reverse Indexing is

performed. In this phase, we store the (document id,

position) pair for each word. For example, if after the

third phase the indexed words for document 5 are:

"decent - 1," "product - 2," "wrote - 3," "money - 4,"

then in the reverse indexing phase, the word

"decent" would be associated with a list like [(5,1)],

where each element of the list represents a pair of

(document id, position id).

Figure 1: Upload/Query

1. Use Cases of Full Text Search

Applications of full-text search include: processing

logs, indexing user-entered text, indexing text

files/documents (e.g., resume indexing for searching

based on resume content), and site indexing.

III. ELASTIC SEARCH

Apache Lucene is impressive, but it operates as

software designed for a single machine. However,

relying on a single machine presents challenges such

as becoming a single point of failure, potential

limitations in storage capacity for documents, and

the inability to efficiently manage high volumes of

traffic. Consequently, Elastic Search was developed

on top of Lucene to address these scalability issues.

When considering Elastic Search's priorities, the

question arises: should it prioritize greater availability

or stronger consistency? In the case of search

systems, such as LinkedIn's post search, a high level

of consistency is not always a strict requirement.

Therefore, Elastic Search may lean towards

prioritizing high availability. Let's delve into the

terminology encompassing Document, Index, and

Node. A Document represents an entity containing

text for indexing, like an entire LinkedIn post. An

Index is a compilation of indexed documents; for

example, LinkedIn posts could constitute one index,

while resumes might form a distinct index. A Node,

in this context, signifies a physical or virtual machine.

1. Sharding

If there are an overwhelming number of documents,

making it impractical to fit the entire dataset on a

single machine, how would you approach sharding?

Elastic search employs sharding based on document

ID, ensuring that a document, identified by its

document ID, is never divided across multiple shards;

instead, it exclusively belongs to a specific shard. The

sharding algorithm entails specifying the desired

number of shards during Elastic search setup. If the

number of shards is either fixed or infrequently

modified, a simpler approach than consistent

hashing is employed: a document with a document

ID is assigned to shard number (hash (document_ id)

% number of shards).

2. Replication

Similar to specifying the number of shards, you can

also define the number of replicas during the setup

phase. Replicas are essential because machines can

fail, and having replicas ensures that even in the

event of machine failures, the shard remains active,

and data is preserved. Additionally, a higher number

of replicas aids in distributing the load of read

operations, as a read can be directed to any of the

replicas. Just as in the master-slave model, one of the

replicas within the shard is designated as the

primary/master, while the remaining replicas function

as followers/slaves. For instance, if num_ nodes = 3,

num_ shards = 2 (0 and 1), and num _replicas = 3,

the configuration might look like the following in

figure 2.

Figure 2: Replicarion

When there are fewer nodes, it results in multiple

shards coexisting on the same node. This can be

Sourabh Sethi. International Journal of Science, Engineering and Technology, 2023, 11:6

Page 3 of 4

mitigated by introducing additional nodes into the

cluster. The increased number of nodes in the cluster

also provides the flexibility to configure and manage

the allocation of shards per node.

IV. READ AND WRITE FLOW

Write (Index a new document): To index a new

document, the system locates the appropriate shard

for the document_ id and identifies the node

containing the primary replica. The request to index

the document, similar to Lucene's write process

described earlier, is then transmitted to that node

(primary replica). Updates from the primary replica

are asynchronously propagated to the slave replicas.

Read (Given a phrase, find matching documents

along with matching positions): As documents are

distributed across shards, and any document could

potentially match the given phrase, reading in Elastic

search involves reading in every shard. Upon

receiving a read request, the responsible node

forwards it to the nodes holding the relevant shards,

gathers the responses, and communicates with the

client. This node is termed the coordinating node for

that particular request. The fundamental flow is as

follows: Resolve the read requests to the relevant

shards. Select an active copy of each relevant shard

from the shard replication group, which can be either

the primary or a replica. Dispatch shard-level read

requests to the chosen copies. Aggregate the results

and respond. In cases where a shard fails to respond

to a read request, the coordinating node redirects

the request to another shard copy within the same

replication group. Repeated failures may lead to the

unavailability of shard copies. For swift responses,

certain Elastic search APIs provide partial results if

one or more shards encounter failures.

V. CONCLUSION

Apache Solr boasts exceptional indexing and search

speed, featuring a remarkably compact index size

and impressive extensibility. It doubles as a versatile

repository and incorporates various additional

functions, including imprecise search capabilities and

seamless scalability. However, it is worth noting that

Solr operates as a Java server within a servlet

container, functioning as a web service with

XML/JSON/CSV interfaces. [5] On the other hand,

Elastics earch, built on Apache Lucene, exhibits

slightly lower indexing and searching speeds

compared to Sphinx. Despite this, Elastic search

offers a comprehensive suite of tools beyond search

and storage, encompassing visualization, log

collection, and encryption systems. Its scalability and

ability to handle intricate data structures make it an

ideal choice for analytical platforms. While Elastic

search may not be the most user-friendly, it

compensates with a plethora of advanced features.

Notably, it consumes minimal memory, and its

incremental indexing is as swift as indexing multiple

documents concurrently.

ACKNOWLEDGEMENTS

We have collaborated with strategic partners whose

invaluable contributions have been pivotal in

identifying search solutions within the market. Their

significant role extends to implementing diverse

search solutions across a range of enterprise

applications over the years.

REFERENCES

1. Gormley, Clinton, and Zachary Tong. Elastic search:

the definitive guide: a distributed real-time search

and analytics engine. " O'Reilly Media, Inc.", 2015.

2. Kononenko, Oleksii, Olga Baysal, Reid Holmes, and

Michael W. Godfrey. "Mining modern repositories

with elastic search." In Proceedings of the 11th

working conference on mining software repositories,

pp. 328-331. 2014.

3. Kuc, Rafal, and Marek Rogozinski. Elastic search

server. Packt Publishing Ltd, 2013.

4. Amato, Giuseppe, Paolo Bolettieri, Fabio Carrara,

Fabrizio Falchi, and Claudio Gennaro. "Large-scale

image retrieval with elastic search." In The 41st

International ACM SIGIR Conference on Research &

Development in Information Retrieval, pp. 925-928.

2018.

5. Voit, Aleksei, Aleksei Stankus, Shamil Magomedov,

and Irina Ivanova. "Big data processing for full-text

search and visualization with Elastic search."

International journal of advanced computer science

and applications 8, no. 12 (2017).

6. Bagnasco, S., D. Berzano, A. Guarise, S. Lusso, M.

Masera, and S. Vallero. "Monitoring of IaaS and

scientific applications on the Cloud using the Elastic

search ecosystem." In Journal of physics: Conference

series, vol. 608, no. 1, p. 012016. IOP Publishing,

2015.

7. Betke, Eugen, and Julian Kunkel. "Real-time I/O-

monitoring of HPC applications with SIOX, elastic

Sourabh Sethi. International Journal of Science, Engineering and Technology, 2023, 11:6

Page 4 of 4

search, Grafana and FUSE." In High Performance

Computing: ISC High Performance 2017 International

Workshops, DRBSD, ExaComm, HCPM, HPC-IODC,

IWOPH, IXPUG, P^ 3MA, VHPC, Visualization at Scale,

WOPSSS, Frankfurt, Germany, June 18-22, 2017,

Revised Selected Papers 32, pp. 174-186. Springer

International Publishing, 2017.

8. Sholihah, Walidatush, Sangga Pripambudi, and Anggi

Mardiyono. "Log event management server

menggunakan elastic search logstash kibana (elk

stack)." JTIM: Jurnal Teknologi Informasi dan

Multimedia 2, no. 1 (2020): 12-20.

9. Bevendorff, Janek, Benno Stein, Matthias Hagen, and

Martin Potthast. "Elastic chatnoir: Search engine for

the clueweb and the common crawl." In Advances in

Information Retrieval: 40th European Conference on

IR Research, ECIR 2018, Grenoble, France, March 26-

29, 2018, Proceedings 40, pp. 820-824. Springer

International Publishing, 2018.

10. Shivakumar, Shailesh Kumar, and Sourabhh Sethii.

Building digital experience platforms: A guide to

developing next-generation enterprise applications.

APress, 2019.

11. Sourabh Sethi , Sarah Panda . The Evolution of

Monolithic DXPs to Micro service based DXPs.

TechRxiv. October 18, 2023. DOI:

10.36227/techrxiv.24328504.v1

AUTHOR’S DETAIL

Sourabh Sethi is working as Independent

Researcher and Technology Lead at Infosys

Technologies Limited. He helps organizations to

develop end-to-end digital solutions and adopt

emerging technologies using agile methodology. He

has achieved multiple honors, including “Most

Valuable Player,” “Insta Awards” from the heads of

his unit at Infosys. He holds a master's degree in

software systems, specialized in data analytics, from

BITS Pilani, Rajasthan, India. Member of the IEEE

Computer Society. Contact him at

sourabhsethi@ieee.org.

Sarah Panda is working as Senior Applied Scientist

at Microsoft, Research & Incubations in Seattle. In

her current role, she works on end-to-end AI

solutions to extract process & search information

from different kind of data, like pdfs, structure

content, text, tables and graphs. She graduated with

a Master’s degree from Columbia University in

Machine Learning projects using NLP & Computer

Vision in her time at Amazon and Microsoft. Contact

her at sp3206@columbia.edu.

Ravi Kamuru is working as "Programmer Analyst /

Developer" at New York Technology Partners. In his

current role working on "End to End functional

development to meet client needs by adapting to

the latest technology development

frameworks. Introducing "Client Customization

Framework" which helps to solve generic issues of

global clients. Received many awards like "Emerging

Leader" and "Above and Beyond". Holds "Bachelor of

Technology" from JNTU Hyderabad India. Contact

him at kamururavi.eee230@gmail.com

Tarun Tayal currently serves as the Technology Lead

at Infosys Technology Limited and is actively

involved in technology-related research. His role

involves working as a full-stack architect, specializing

in Java, .NET, and Angular technologies. With a track

record of delivering end-to-end solutions for

numerous web applications across diverse clients,

Tarun has received multiple accolades from clients

and organizational awards for his significant

contributions. He holds a bachelor's degree from

Punjab Technical University and is certified by

Microsoft in the .NET framework.

mailto:sourabhsethi@ieee.org.
mailto:sp3206@columbia.edu
mailto:kamururavi.eee230@gmail.com

