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I. INTRODUCTION 
 

Extensive research has been conducted on various 

techniques for biodiesel production, revealing that 

traditional heating methods often entail significant 

power consumption. A primary drawback of 

conventional approaches is their limited capacity to 

uniformly apply temperature, predominantly 

affecting the material surface. In contrast, microwave 

systems offer a distinct advantage by directly 

imparting thermal energy to the interior molecules 

of the reactants [1]. Without altering other 

parameters, the use of microwave radiation has 

proven effective in reducing reaction times from 

several hours to mere minutes, presenting a  

 

substantial improvement over conventional heating 

methods for accelerating the transesterification 

reaction [2]. 

 

 However, the adoption of microwaves as a heating 

source does pose challenges due to elevated costs 

[3]. To address this issue, researchers have explored 

modifications to domestic microwave ovens. For 

instance, in a notable study, Teflon hoses were 

introduced to create helixes within the microwave, 

necessitating the incorporation of two openings in 

the oven for material input and output [4]. This 

innovative system prioritized microwave safety to 

prevent material boiling and spillage within the oven. 

With its enclosed design, the system effectively 
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managed the concern of material dissolution (see 

Figure 1). 

 

 
Figure 1: Modified microwave system [4]. 

 

Microwave radiation offers several advantages over 

conventional methods [5], including: 

 Energy transfer directly to the material, utilizing 

diffusional radiation rather than heat transfer. 

 Controlled and precise heating, allowing 

instantaneous activation and deactivation of 

heat. 

 Selective heating capabilities, enabling targeted 

treatment of specific components or areas 

within the material. 

 Significantly shortened reaction times, 

accelerating processes that traditionally took 

hours. 

 Improvement in quality and properties of the 

final product. 

 Facilitation of the synthesis of new materials. 

 Execution of reactions that are impossible with 

conventional tools. 

 Reduction in adverse emissions during the 

process. 

 Increased overall efficiency of the product. 

 Environmental compatibility, characterized by 

low noise and absence of specific contamination. 

 Utilization of clean energy with a reaction trend 

that produces heat through molecular-level 

interactions with materials without inducing any 

changes in them. 

 

In summary, these advantages contribute to more 

efficient and rapid heating of reactants, reduced 

instrument size, enhanced temperature control, 

quicker installation, increased production, and a 

streamlined process with fewer stages, collectively 

fostering improved productivity [6]. 

 

II. EFFECTIVE PARAMETERS ON THE 

BIODIESEL PRODUCTION BY 

MICROWAVE 
 

1. Catalyst 

Transesterification, a slow equilibrium reaction in 

nature, is catalyzed to expedite the process and 

reduce reaction time. Catalysts play a crucial role in 

enhancing reactivity between alcohol and oil, which 

otherwise exhibit low reactivity. Catalysts for 

transesterification are categorized as homogeneous, 

heterogeneous, or biological. Currently, the 

prevalent method for biodiesel production involves 

homogeneous catalysts, particularly alkaline 

catalysts. This approach accelerates the reaction rate 

through efficient mass transfer, with catalyst 

effectiveness influenced by oil water and free fatty 

acid content [7, 8].  

 

A high fatty acid methyl ester (FAME) content of 

99.4% was produced in one study by optimizing 

conditions at 1 weight percent catalyst content, a 

12:1 alcohol-to-oil molar ratio, 400 W microwave 

energy, and a temperature for the reaction of 27°C. 

NaOH and continuous microwaves were also used in 

this study [9]. Using a 3 weight percent catalyst 

concentration, an 800 W microwave power, a 30 

second material retention time, a 12:1 molar ratio, 

and a reaction temperature of 78°C, researchers in 

another study produced biodiesel from palm oil 

wastes with a 97% production efficiency [10]. 

 

SrO and nano SrO catalysts were applied in a 

different study to produce biodiesel from edible oil 

waste using microwaves. The results showed 

exceptional performance, reaching 99.2% efficiency 

in approximately 8.2 minutes [10]. Employing 

traditional and microwave heat sources, the 

generation of biodiesel from camelina oil and 

methanol was investigated utilizing metallic catalysts 

(BaO, SrO, CaO, and MgO). According to the study, 

using microwaves accelerated the manufacture of 

biodiesel in less time, with BaO and CaO showing the 

highest activity and producing yields of 80% and 

94%, respectively [11]. 
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In a different study, beta aluminum zeolite was used 

as a catalyst in the transesterification processes. The 

catalyst's stability across eight cycles was 

demonstrated, and 90% of the production efficiency 

was achieved using microwaves [12]. However, there 

are drawbacks to using heterogeneous catalysts, 

including complicated synthesis, consumption of 

energy, high prices, and the development of a 

hazardous environment [13]. 

 

The growing popularity of enzyme catalysts, 

especially Novozym 435, has drawn notice because 

to its resistance to oils that include high levels of 

water and free fatty acids (FFAs). Under ideal 

circumstances, microwave assisted 

transesterification using Novozym 435 enzyme and 

methanol produced a 95% conversion rate in a study 

on the synthesis of biodiesel from yellow horn oil 

[20]. In a different study, the generation of biodiesel 

from Macoda oil using Lipozyme IM and Novozyme 

435 in combination with methanol was found to be 

more efficient when enzymes and microwaves were 

used instead of traditional heating techniques [21]. 

 

2. Microwave Power 

The transesterification reaction's performance and 

cost in the process of producing biodiesel are 

significantly influenced by the amount of microwave 

power used. While increasing the microwave power 

can boost the production of biodiesel, going beyond 

a specific threshold can have negative consequences 

on triglyceride molecular structure [21].  

 

A study that looked at using microwaves to produce 

biodiesel from waste oil looked at two different kinds 

of oils: those with a high and low fatty acid content.  

 

The results showed that up to 500 W of microwave 

power, biodiesel synthesis increased. Nevertheless, 

the generation of biodiesel was reduced when 

increasing the power to 700 W. Notably, oils high in 

free fatty acids (FFAs) showed less of an effect from 

power enhancement, with the best production rate 

being reached at 600 W. Overpowering the system 

also might cause alcohol to evaporate, which would 

lower the amount of biodiesel produced [22]. 

 

A different study looked at the ethanol-to-oil molar 

ratio, temperature, stirring rate, microwave energy, 

and reaction time in order to produce biodiesel from 

cottonseed oil. The optimal variables, which included 

a molar ratio of 17:1, temperature of 70 °C, stirring 

rate of 380 rpm, reaction time of 12 min, and 

microwave power of 270 W, were determined by 

utilizing Response Surface Methodology (RSM). A 

remarkable 99.5% biodiesel generation efficiency 

was attained in these circumstances [24]. 

 

3. Reaction Time 

Reaction speeds are greatly accelerated by 

microwave heating, which is caused by 

electromagnetic interactions created by microwaves. 

Several reaction parameters, such as catalyst 

quantity, methanol-to-oil ratio, reaction time, and 

temperatures, were examined in a study on the 

generation of biodiesel from micro-algae oil.  

 

The utilization of semi-continuous microwave 

application resulted in an impressive 84.01% output 

efficiency. At 60°C, a methanol-to-oil ratio of 1:10, a 

catalyst concentration of 1.5 weight percent, and a 

reaction duration of 15 minutes, this efficiency was 

attained [25]. 

 

An innovative method of producing biodiesel 

involved pre-mixing reactants with several mixers 

before using microwaves. To provide specific 

conditions for material flow, coiled reactors were 

added (refer to Figure 1). This technology met 

worldwide ASTM criteria for biodiesel in just 5 

minutes, achieving an astounding 99.8% efficiency 

utilizing NaOH and palm oil [26].  

 

As depicted in Figure 2, there is a notable increase in 

biodiesel production efficiency with the extension of 

reaction time, reaching a peak before the curve 

shows a diminishing slope. Beyond a certain point, 

specifically in the transition from 90 to 120 minutes, 

there is a decrease in biodiesel production efficiency.  

 

This observation underscores the critical role of time 

in biodiesel production, emphasizing that while an 

initial increase in reaction time enhances efficiency, 

prolonged durations may lead to a decline in overall 

reaction efficiency. 
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Figure 2: Biodiesel production efficiency vs. reaction 

time. 

 

4. FFA Contents of Oil 

Homogeneous alkaline catalysts, such as KOH and 

NaOH, are cost-effective and commonly utilized in 

industrial FAME procedures due to their short 

reaction times and ease of transport and 

maintenance [27]. However, the existence of FFAs in 

oil might affect transesterification events, resulting in 

the creation of undesired soap. High FFA 

concentrations, common in vegetable waste oils, can 

pose challenges and increase production costs [28]. 

A study on biodiesel production from high FFA 

content Nag Champa oil employed a two-step 

procedure involving successive microwave and ultra-

sonication applications. The combined method 

reduced reaction times compared to individual use 

of microwave, ultra-sonication, and conventional 

methods, enhancing efficiency [29]. 

 

In a different study, a two-stage procedure was used 

to reduce the FFA level from 14% to 1% using 

microwave-assisted production of biodiesel from 

Jatropha curcas L. seeds. First, esterification was 

carried out utilizing H as an acid catalyst. Next, 

ethanol, KOH, and microwave energies were used for 

transesterification. Optimized parameters resulted in 

a maximum conversion yield of 97.29% [30]. 

Additionally, the use of aminophosphonic acid resin 

D418 (heterogeneous) with microwave radiation 

achieved a 90% conversion efficiency of FFA to fatty 

acid ethyl ester in 7 hours, outperforming normal 

heating conditions [31]. 

 

5. Effect of Temperature  

The reaction's temperature also affects the amount 

of biodiesel produced. It has been observed that 

raising the temperature accelerates the reaction and 

increases yield. This could be because the oil's 

viscosity decreases with temperature, improving oil-

alcohol mixing and facilitating the quicker process of 

separating glycerol from biodiesel. Nevertheless, a 

considerable decrease in biodiesel yield was seen 

with each temperature rise. This may be because, in 

contrast to the transesterification reaction, side 

reactions (such as the hydrolysis of methyl esters of 

fatty acids to homologous acid and alcohol) occur 

more quickly at higher temperatures, which leads to 

a lower yield of biodiesel. Noureddini [32] conducted 

research on soybean biodiesel made using 

methanol, varying the temperature between 30 and 

70 °C while maintaining constant other parameters 

and observing the rate of reaction. Among the 

various temperature settings, it was found that 70 °C 

was the most favorable temperature for the best 

biodiesel output and reaction rate. Based on 

published research, Table 1 shows how temperature 

affects biodiesel production. 

 

Table 1: Effect of temperature on Biodiesel 

production 

 
 

III. EMISSION AND PERFORMANCE OF 

ENGINE 
 

Numerous studies on waste cooking oil biodiesel's 

performance, emission, and combustion 

characteristics and highlights about the fuel tested, 

engine used, and trends observed by different 

investigators are as depicted below in detail. Due to 

its sufficient oil content, palm kernel oil (PKO) is a 

good feedstock for the manufacturing of biodiesel. 

As a result, the effectiveness of its conversion of PKO 

to biodiesel using microwave and traditional heating 

systems was first evaluated in the diesel engine. Ten 
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weight percent oil with a high FFA level was found in 

the palm seed (Zahidi type). PKO was trans-esterified 

using both conventional and microwave methods 

after its FFA content was reduced by an esterification 

process [40]. Muralidharan et al. [41] used waste 

cooking oil and its mixes with regular diesel under 

various loading circumstances to perform research 

on a single-cylinder, four-stroke variable 

compression ratio CI engine. With a larger load, the 

B40 blend showed improved brake thermal 

efficiency while exhaust gas temperature dropped. 

Using Canola Oil Methyl Esters (COME) and Waste 

Palm Oil Methyl Esters (WPOME) in a 6-cylinder 

diesel engine, Ozsezen and Canakci [42] discovered 

that WPOME and COME had less braking power at 

full load than Petroleum-Based Diesel Fuel (PBDF). 

NOx emissions rose while HC, CO, CO2, and smoke 

opacity decreased. Exhaust gas temperature and 

emissions were found to be condition-dependent on 

the engine, but unburned hydrocarbon emissions 

were shown to be fuel-dependent on two DI four-

stroke diesel engine generators [43]. Increased NOx 

emissions in WCOME-fueled CI engines are 

frequently seen as compared to Petro diesel. Due to 

advanced injection time brought on by the 

processed waste cooking oil blend's larger bulk 

modulus, external EGR [44] reduced NOx emissions 

in waste cooking oil combined with regular diesel. 

Studies using methyl esters from used cooking oil 

are usually carried out in steady-state environments. 

The US-HDD transient cycle was used by Lin et al. 

[45] to investigate the use of Waste Cooking Oil 

Methyl Esters (WCOME) in Ultra Low Sulfur Diesel 

(ULSD) on a Heavy Duty Diesel Engine (HDDE). There 

was a decrease in PAH emissions of 7.53%–37.5%, 

HC emissions of 10.5%–36.0%, and PM emissions of 

5.29%–8.32%. There was a decrease in CO emissions 

of 3.33–13.1%. In a multi-cylinder vertical diesel 

engine, waste cooking oil from coconut and palm 

oils was combined with pure diesel at a ratio of 5% 

WCOME to 95% pure diesel [46]. In comparison to 

pure diesel, the lower heating values of palm and 

coconut oils led to a 0.7% and 1.2% decrease in 

brake power for C5 and P5 blends, respectively. For 

the P5 and C5, the exhaust temperature rose by 

1.12% and 1.58%, respectively. While C5 had lower 

HC emissions, P5 mixes showed greater CO2 and 

lower CO emissions. For C5, NOx emissions went 

down by 1%, but for P5, they were up by 2%.Blends 

of Waste Fried Oil Methyl Esters (WFOME) were 

studied by Hirkude and Padalkar [47] using a single-

cylinder, four-stroke DI diesel engine. For the B50 

blend at rated output, they saw a 6.89% rise in BSFC 

and a 6.5% drop in BTE. For various mixes, there were 

decreases in CO emissions ranging from 21% to 45% 

and in particulate matter from 23% to 47%. 

Experiments were carried out on a EURO IV Diesel 

Engine using mixes of waste cooking oil (WCO) 

biodiesel and pure diesel under different loading 

scenarios by An et al. [48]. Blends using biodiesel 

were shown to have lower emissions of NOx and HC. 

While BTE was higher for 50% and 100% loads and 

lower for the 25% loading condition, higher BSFC 

was observed at low speeds and partial loads. An 

examination was conducted on two types of 

biodiesels using a four-cylinder, four-stroke, water-

cooled, turbocharged DI engine: virgin vegetable oil 

biodiesel and waste oil biodiesel [49]. In addition to 

a 15% increase in BSFC, biodiesel produced 

somewhat greater in-cylinder pressure and heat 

release rates. Using several mixes of leftover cooking 

oil methyl esters as fuel, Nantha Gopal et al. [50] 

published on the performance, emission, and 

combustion characteristics of a constant speed 

single-cylinder 4-stroke air-cooled DI diesel engine. 

Tests using blends of Waste Cooking Oil Methyl 

Ester (WCOME) in percentages of 20%, 40%, 80%, 

and 100% were contrasted with blends using mineral 

diesel. When compared to diesel, the results 

indicated that WCOME had higher specific fuel 

consumption, lower CO and HC emissions, lower 

brake thermal efficiency (BTE), and higher NOx 

emissions. 

 

A Waste Cooking Oil (WCO) emulsion made up of 

70% WCO, 15% water, 10% ethanol, and 5% 

surfactant was another option investigated [51]. In 

comparison to diesel, plain WCO produced more 

smoke, hydrocarbon, and carbon monoxide 

emissions during tests on a Kirloskar AVI CI engine. 

With increased cylinder peak pressure and maximum 

rate of pressure rise at high power outputs, WCO 

emulsions dramatically decreased all emissions. 

Without any changes, the performance of diesel 

engines running on WCO emulsion was on par with 

standard diesel engines. Ahmed et al. [52] examined 
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WCOME made from mustard oil using gas 

chromatography and tested it in a Mitsubishi Pajero 

engine. Among the several biodiesels, Mustard Oil 

biodiesel (MB) showed the highest calorific value 

and the best oxidation stability. When compared to 

pure diesel, the test fuel demonstrated appreciable 

decreases in noise levels and considerable 

reductions in HC and CO emissions. Chuah et al. 

combined pure diesel with waste cooking oil methyl 

esters made using hydrodynamic cavitation 

technology [53]. In comparison to pure diesel, the 

mixes of WCOME demonstrated 1.9%–8.4% poorer 

brake thermal efficiency, 0.6%–5.2% lower torque, 

and 1.6%–6.7% lower braking power. Because 

biodiesel has a higher oxygen content, it burns more 

efficiently, producing relatively more carbon dioxide 

emissions and less carbon monoxide emissions. 

 

IV. INVESTIGATION INTO THE ENGINE'S 

OPERATING PARAMETER VARIATIONS 
 

More frequently, the properties of Petroleum-based 

Diesel fuel dictate Diesel engine design and 

development. Recently, biodiesels from various 

vegetable oil sources are being utilized in Diesel 

engines. Therefore, understanding the optimal 

operating parameters for Diesel engines using 

biodiesel becomes crucial. Transesterification 

technologies, widely employed for biodiesel 

production, induce significant changes in oil 

properties, impacting engine operating parameters 

such as injection pressure and timing. Researchers 

globally have extensively worked on this aspect, as 

summarized in Table 2, which outlines studies where 

engine parameters like compression ratio, injection 

pressure, or timing were varied to analyze engine 

characteristics. Muralidharan and Vasudevan [54] 

investigated a variable compression ratio CI engine 

using waste cooking oil methyl esters. They varied 

compression ratios (18, 19, 20, 21, and 22) and found 

that the blend B40 demonstrated superior brake 

thermal efficiency at a compression ratio of 21. 

Kannan and Anand [55] varied injection pressure 

(220 to 300 bar) and timing (23°, 25.5°, 28° bTDC) for 

a single-cylinder 4-stroke DI KIRLOSKAR diesel 

engine with Waste Cooking Oil (WCO) as fuel. An 

optimal setting of 280 bar injection pressure and 

25.5° bTDC timing resulted in increased Brake 

Thermal Efficiency (BTE), reduced emissions, and 

higher cylinder gas pressure. 

 

Table 2: Details of engines and fuels used in various 

studies 

 

Using various mixes of WCO biodiesel and diesel, El-

Kassaby and Nemit Allah [56] investigated the 

effects of compression ratio and blending ratio on a 

single-cylinder variable compression ratio diesel 

engine. They found that while HC and CO emissions 

reduced with an increase in compression ratio, brake 

thermal efficiency increased along with CO2 and 

NOx emissions. A single-cylinder DI diesel engine 

with a common rail injection system was the subject 

of an analysis by Hwang et al. [57] about the effects 

of injection parameters (varying injection timings 

from -25 to 0 CAD after TDC and 80 and 160 MPa 

injection pressures). Waste Cooking Oil (WCO) 

reduced emissions of HC, CO, and smoke, but NOx 

increased under all tested circumstances. Salmani et 

al.'s study [58] looked at the characteristics of 

ignition delay at high pressure and temperature 

levels. They discovered identical combustion 

properties at 25 bar ambient air pressure when 

comparing pure diesel and micro-emulsion of 

coconut oil. This suggests equivalent ignition 

latencies at fixed injection pressure. 

 

V. RESEARCH ON USING ANN 

MODELING TO FORECAST IMPORTANT 

ENGINE CHARACTERISTICS 

 
Researchers may now use sophisticated tools and 

computationally efficient numerical approaches to 

forecast and optimize operational parameters, 

thanks to advancements in computer capacity [59–
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63]. Artificial Neural Networks (ANN) are a cutting-

edge modeling technology that reduces the need for 

a great deal of testing by speeding up the prediction 

of operational parameters. Such works are reviewed 

in this section and are included in Table 3. Canakci et 

al. [64] used the back-propagation technique to 

investigate in detail the prediction of emission 

parameters and performance using five distinct 

neural networks. With an astounding R² value of 

0.99, the fifth network predicted flow rates, 

maximum injection pressure, emissions, engine load, 

maximum cylinder gas pressure, and thermal 

efficiency while taking into account input parameters 

including engine speed, fuel qualities, and 

environmental factors. In order to anticipate 

performance and emission characteristics, 

Shivakumar et al. [65] used Waste Cooking Oil 

(WCO) blends in their trials on a single-cylinder 

variable compression ratio DI diesel engine. They 

then used Artificial Neural Networks (ANN). For 

every category, two distinct models were created, 

and the predicted and experimental values exhibited 

a strong connection. The training and test data's 

Mean Relative Error (MRE) showed prediction 

accuracy. Ghobadian et al. [66] created an ANN 

model based on experimental data and used a two-

cylinder diesel engine to assess performance and 

emission characteristics. The engine torque, specific 

fuel consumption, and CO and HC emissions were all 

precisely predicted by the model, which had 

correlation coefficients (R) ranging from 0.929 to 

0.999. 

 

Table 3: Details of Different input and output 

parameter control in various engines 

 
 

Suhaiqah [67] has suggested a variety of factors for 

experiment design that make use of response 

surface technique and We spoke about variables 

such the ratio of methanol to oil, the concentration 

of NaOH, the reaction temperature (°C), and the 

reaction duration (min). Eqn. (1) [67] is used to 

compute the FAME yield throughout the 

Transesterification Reaction. Employing the 

response surface methodology and face-centered 

central composite design, Mahfud [68] optimized his 

study and found that yield raised as he improved 

reaction time and microwave power, with the best 

conditions being 50 minutes each and 440.53 watts. 

The highest yield, which was calculated using 

Equation (2), was achieved by using KOH catalysts at 

low concentrations of 2%. Mohammed et al.'s [69] 

application to examine how important operating 

factors affect the yield and conversion of Jatropha 

biodiesel was successful. According to ANOVA 

results, temperature had the greatest impact on 

FAME conversion and yield, with an ideal 

temperature of 60˚, a catalyst dosage of 4%, and a 6-

hour reaction period. Furthermore, it was discovered 

that the interaction between catalyst loading and 

reaction duration had an incredibly large impact on 

both responses, comparable to Eqn. (2). Mohammed 

et al. have established an eqn. (3) to determine the 

yield.  

---------------- (1) [67, 73, 74] 

 

------------(2) [68] 

 ---

-----------(3) [69, 72] 

 

Table 4: DOE Parameters opted by different 

researchers in different studies. 
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Temperature, pressure, JOME:TMP molar ratio, and 

catalyst quantity are all thoroughly investigated in 

relation to their effects on the synthesis process 

using the Taguchi L9 experimental architecture. 

According to statistical analysis, the factors are 

ranked as follows: catalyst, JOME:TMP molar ratio, 

temperature, pressure, and catalyst. In the work by 

Kamil [70], the Taguchi parameter design effectively 

confirms the ideal process parameters using an 

empirical experiment for the synthesis of polyol 

ester. The YGME yield was estimated as a function of 

operational factors using the Taguchi optimization 

approach [71]. A YGME yield of 95.9 ± 0.94% was 

achieved by using the ideal methanolysis 

temperature, methanol/YG molar ratio, calcination 

temperature, and catalyst dose, which were 70 °C, 

15:1, 700 °C, and 2.0 weight percent. Gouda et al. [72] 

chose a set of parameters that are shown in table 4 

and came to the conclusion that, under optimal 

reaction conditions predicted by the RSM numerical 

optimization process under microwave irradiation, 

the prepared catalyst showed excellent activity for 

the transesterification of biodiesel with 98.03 ± 0.7% 

conversion and a yield of 97.22 ± 0.4%. With the use 

of a microwave-assisted process that uses CaO as a 

catalyst, waste cooking oil may be converted into 

biodiesel [73]. For both the FFD and CCD methods, 

the ideal biodiesel yield was determined to be 

91.32% and 90.71% for M:O molar ratios of 9.6:1 and 

9.61:1, CaO loading of 1.26 (w/w)% and 1.34 (w/w)%, 

and process times of 9.7 min and 9.89 min. The 

evaluation of response surface methodology (RSM) 

dependent optimization strategies for biodiesel 

synthesis from used or waste cooking oil via a CaO 

catalyzed microwave-irradiated process was the 

focus of Prajapati et al.'s study [74]. The following 

factors were used to maximize the biodiesel yield: 

reaction interval, CaO quantity (w/w%), and MeOH: 

oil molar ratio. These factors impact the production 

of biodiesel, which is examined using a variety of 

statistical graphs. 

From the above studied it is very clear that, many 

parameters could be adopted to evaluated the yield 

and optimization of different oils such as waste food 

oil, seed oils, and other oils. This leads to many 

confusions and discrepancies while selecting the 

factors for the study and it is quite tedious to 

conclude the study. The solution for this kind of 

discrepancies is to opt for the AI based tools and 

prediction of AI based solution could help this kind 

of multiple parameter based studies.  

VI. TOOLS FOR BETTER OPTIMIZATION 

Gottfried Leibniz's theories and concepts are 

credited with introducing artificial intelligence (AI) to 

the world [75]. The field of artificial neural networks 

(ANNs) was introduced by McCulloch and Pitts in 

1943 with their evolutionary representation of the 

human brain [76]. A vast variety of complicated 

issues may be learned, recognized, and solved by 

ANNs. ANNs and deep learning (DL) approaches are 

currently the most widely used and important 

machine learning (ML) algorithm techniques [77–84]. 

The accuracy of a deep neural network (DNN) and a 

standard machine learning method are contrasted in 

Figure 3. It is evident that DL techniques outperform 

traditional machine learning methods in terms of 

accuracy when sufficient data and processing 

capacity are available [76].  

In machine learning, DL has gained popularity since 

2006. Figure 4 [84] illustrates its place in data science 

and artificial intelligence. Because of the availability 

of data and the advancement of system processing 

capacity, DL approaches outperform classical ML 

algorithms [84, 85]. Traditional machine learning 

methods work effectively because they are simpler 

to build and work better in shorter databases and 

simpler applications. One of the main causes of the 

lack of early growth in neural networks and deep 

learning approaches is this [75, 76, 86]. Much quicker 

advancements in data gathering, storage, updating, 

and administration are now feasible with the arrival 

of the Big Data era. Furthermore, the advancement 

of GPU technology has enabled efficient handling of 

big data collections. Recent developments in DL 

approaches can be attributed to these remarkable 

advancements [76, 84]. These algorithms' popularity 

has also risen due to their ability to shorten 

calculation times and speed up the convergence 

process [77, 78].  

Function approximation [87, 88], classification [89-

94], feature selection [95, 96], medical image 
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registration [80], pattern recognition [97–100], data 

mining [101], signal processing [102], nonlinear 

system identification [103, 104], speech processing 

[105], and other uses have all been applied to 

artificial neural networks (ANNs). Furthermore, 

several DL techniques have been applied to a range 

of tasks, such as handwritten digit identification 

[115–120], phoneme recognition [114], classification 

[106–110], prediction [111–113], etc. 

 
Figure 3: Comparison of the accuracy of a typical 

machine learning algorithm and a deep neural 

network [76] 

 

 
Figure 4: The position of deep learning in artificial 

intelligence and data science [84] 

 

One of the main challenges in machine learning is 

discovering flaws and developing these algorithms, 

given the significance of employing ANNs and DL 

approaches in numerous applications. One of the 

hardest problems in machine learning is the process 

of ANNs and DL architectures learning. One of the 

primary goals of research over the last 20 years has 

been to optimize the parameters and structure of 

ANNs and DLs [82–84]. Numerous factors are 

frequently taken into account while optimizing 

ANNs and DLs, including weights, hyper-parameters, 

network architecture, activation nodes, learning 

parameters, learning algorithm, learning 

environment, etc. [83]. The most crucial aspects of 

neural networks and deep learning architectures are 

the optimization of weights, biases, and hyper-

parameters. In actuality, the two pillars of structure 

and learning algorithm set ANNs and DLs apart. 

Gradient-based techniques have been utilized 

extensively in the past to teach architects. 

Nonetheless, it has been shown that optimization 

techniques are necessary due to the drawbacks of 

gradient-based algorithms [82–84]. For instance, the 

learning objective of the back propagation (BP) 

learning method is to minimize the cost function by 

optimizing the network's weights and thresholds. In 

order to apply BP in gradient-based learning 

methods, the cost function has to be derivative. This 

is another drawback of learning methods that use 

gradients. because the cost function and the 

activation function are frequently not derivatives. 

These algorithms often employ sigmoid activation 

functions. Numerous gradient-based techniques, 

including Levenberg Marquardt (LM) and Back 

Propagation (BP) approaches, have been developed 

in the literature to educate neural network-based 

systems [103]. In order to enhance gradient-based 

learning algorithms—which have superior 

generalizability and convergence than the BP 

algorithm—Conjugate Gradient Algorithm [121], 

Newton's Method [122], Stochastic Gradient 

Descent (SGD) [123], and Adaptive Moment 

Estimation (Adam) [124] were first created. 

Nevertheless, the DL structures and neural networks 

used in these techniques are regarded as "black 

boxes" [82]. because human intuition is incapable of 

interpreting it. A generalized and ideal network has 

been made possible by swarm intelligence and 

evolutionary algorithms [125–128]. The optimization 

of the ANNs and DLs' structure and parameters 

through the use of meta-heuristic (MH) methods has 

increased significantly since training them is an NP-

hard optimization issue. The best estimate of DL 

components (hyper-parameter, weights, number of 

layers/neurons, learning rate) is formulated by MH 

algorithms as an optimization problem [82]. Multi-

objective MH algorithms have become more 
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necessary due to the presence of several purposes in 

optimizing ANNs and DLs, such as error reduction, 

network generalization, and model simplification. It 

is still difficult for optimizing ANNs and DL structures 

using MH methods, and further study is required. 

The learning process is enhanced when DLs are 

trained with MH algorithms. This shortens the 

algorithm's execution time and improves its 

accuracy. 

VII. CONCLUSION  
 

This review highlights the advantages of microwave-

assisted biodiesel production, emphasizing reduced 

reaction times through direct thermal energy 

transfer. Innovative modifications, such as Teflon 

hoses in domestic microwave ovens, address cost 

challenges. Catalysts, including alkaline, metallic, 

and enzyme catalysts, play a crucial role in 

transesterification.  

Microwave power optimization and innovative pre-

mixing methods accelerate biodiesel synthesis. The 

review explores the impact of free fatty acid content 

and temperature on production, emphasizing the 

need for careful parameter optimization. Engine 

performance with waste cooking oil biodiesel is 

discussed, noting variations in operating 

parameters, biodiesel blend influence, and trends in 

efficiency, exhaust temperature, and emissions.  

The effectiveness of Artificial Neural Networks (ANN) 

for predicting engine characteristics is highlighted, 

along with the application of Design of Experiments 

(DOE) and response surface methodology in 

biodiesel synthesis optimization. The role of AI, 

particularly ANNs, in streamlining complex 

parameter studies for biodiesel production and 

engine performance research is emphasized for 

enhanced efficiency. 
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