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I. INTRODUCTION 
 

In today's competitive labor market, both job 

seekers and employers face the challenge of 

matching the right candidates with suitable job 

opportunities [1]. Traditional methods, like manual 

screening and keyword matching, are often 

inefficient, time-consuming, and prone to bias [2]. 

The rise of machine learning and natural language 

processing has enabled the development of 

automated job recommendation systems [3]. These 

systems aim to match job seekers with relevant 

positions by analyzing job descriptions, profiles, 

skills, and interests [4]. 

 

This research focuses on developing a CNN-based 

job recommendation model, as CNNs excel at 

recognizing complex patterns in data [4]. Their 

hierarchical structure allows them to extract 

valuable characteristics from job descriptions, 

leading to improved recommendations [6]. We  

 

compare our CNN model with other algorithms 

such as Random Forest, Logistic Regression, 

Decision Tree, and Naive Bayes, assessing 

performance, interpretability, scalability, and 

generalization. 

 

To improve model transparency, we explore 

interpretability techniques like attention or saliency 

maps to enhance trust in the model’s 

recommendations. By delivering accurate, 

personalized, and unbiased suggestions, the CNN 

model has the potential to revolutionize job 

matching. This study will benefit both job seekers 

and employers by simplifying the recruitment 

process and increasing labor market efficiency. 

 

II. LITERATURE REVIEW 
 

VNJobSpace consists of six core components that 

independently collect, integrate, and analyze job 

advertisements. It includes three databases that 
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store job-related data, the structure of each source, 

and collected curricula. Currently, VNJobSpace 

users can access over 700,000 job listings from 14 

different job sites in Vietnam. Users can explore this 

aggregated data, receive career forecasts, and get 

advice on courses needed to achieve their desired 

jobs [7]. 

 

The system uses a Random Forest Regressor 

algorithm to assess applicant performance and 

recommend the best candidates for a position, 

optimizing placement probability and easing the 

recruiter’s task. Random Forest builds multiple 

decision trees and combines them to provide more 

accurate and reliable forecasts, simplifying and 

enhancing the recruitment process [8]. 

 

Increasingly, companies are selecting candidates 

based on resume information, though some 

candidates exaggerate their skills. This system also 

provides recruiters with a thorough view of a 

candidate's technical skills and domain knowledge, 

helping organizations ensure the right candidates 

access the right career opportunities [9]. 

 

The prediction method is based on machine 

learning, deep learning, and ensemble models, 

tested on large, medium, and small datasets. Our 

method outperforms alternative approaches, 

achieving high accuracy (0.96, 0.98, and 0.99, 

respectively). Surprisingly, "business travel" was 

identified as a key factor for employee retention, 

more significant than traditional factors like awards 

or compensation [10]. 

 

In this study, we enhanced a job prediction 

algorithm by combining job descriptions and 

resumes. Historical delivery weights and user 

similarity weights, calculated from job descriptions 

and resume data, optimize the system. Tests on real 

datasets show that our methods significantly 

improve job suggestion accuracy [11]. 

 

Job proposals consider both the candidate's 

preferences and content-based matching. 

Preferences are either mined from rules or 

extracted from the candidate's job application 

history. Our approach achieves much higher 

accuracy compared to basic job suggestion 

methods [12]. 

 

This study develops a job recommendation system 

using collaborative filtering. The system suggests 

jobs based on user profiles and calculates a 

similarity index between skill sets using Euclidean 

distance, then ranks them using the naive Bayes 

method. The recommendation system is 

implemented in Python [13]. 

 

We present a job recommendation model 

incorporating Gradient Boosting Regression Tree 

(GBRT) with time (T-GBRT). The T-GBRT model adds 

time variables and weights to improve prediction 

accuracy while reducing computational complexity 

through neighbor-based filtering. Experimental 

results show that our model performs best across 

four criteria compared to other models [14]. 

 

We integrate SD-Predictor with YARN to improve 

task scheduling and minimize the impact of 

misconfigured jobs. Our method achieves 78% 

precision, 52% recall, and a 2% false positive rate in 

predicting job failures, showing better recall and 

false positive rates than related approaches [15]. 

 

Our algorithm accurately predicts outcomes using 

feedback from previous users. We also propose a 

Monte-Carlo Tree Search (MCTS) method to reduce 

computational complexity by clustering similar 

items. Testing on a large database from Work4 

demonstrates our algorithm's superior performance 

compared to existing methods [16]. 

 

In ideal conditions with significant user and 

repository history, we achieved a precision of 0.886 

using machine learning and selected attributes. 

Despite issues with cold starts, the classifier still 

reached an accuracy of 0.729, sufficient for 

automatically selecting prominent projects for 

developers [17]. 

 

Job seekers often spend hours sifting through vast 

amounts of online job listings. We simplify this 

process by comparing content-based and 

collaborative filtering methods. Our system 

provides highly accurate job recommendations 
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based on applicants' profiles while protecting their 

preferences and behaviors [18]. 

 

This paper describes a job recommender system 

aimed at helping job seekers find suitable positions. 

Job offers are collected, processed, and clustered 

by characteristics such as titles and technical skills. 

Job seeker behavior, including ratings and 

applications, is matched with job clusters to 

generate a top-n list of recommendations based on 

user preferences[19]. 

 

III. PROPOSED METHOD 
 

1. Preprocing Method 

 TF-IDF vectors to represent the texts. 

 

Step 1: Data Preprocessing 

 Clean the job descriptions by removing 

unnecessary characters, punctuation, and 

stopwords. 

 Tokenise the job descriptions into individual 

words or terms. 

 Perform stemming or lemmatisation to reduce 

words to their base or root form. 

 

Step 2: Compute TF (Term Frequency) 

 Calculate the term frequency (TF) for each term 

in the job descriptions using the equation: 

 TF(term, job_description) = (Number of 

occurrences of term in job_description) / (Total 

number of terms in job_description) 

 

Step 3: Compute IDF (Inverse Document 

Frequency) 

 Calculate the inverse document frequency (IDF) 

for each term in the entire job dataset using the 

equation: 

 IDF(term) = log((Total number of job 

descriptions) / (Number of job descriptions 

containing term)) 

 

Step 4: Compute TF-IDF (Term Frequency-

Inverse Document Frequency) 

 Multiply the TF value of each term in a job 

description by its IDF value using the equation: 

 TF-IDF(term, job_description) = TF(term, 

job_description) * IDF(term) 

Step 5: Vector Representation 

 Represent each job description as a vector 

using the computed TF-IDF scores. 

 Each dimension of the vector corresponds to a 

unique term in the dataset. 

 If a term is present in the job description, its TF-

IDF score is used as the value for that 

dimension; otherwise, the value is 0. 

 

Step 6: Similarity Calculation 

 Calculate the similarity between job 

descriptions using vector similarity measures 

such as cosine similarity. 

 The cosine similarity between two vectors A 

and B is calculated using the equation: 

 

Cosine_Similarity(A, B) = (A . B) / (||A|| * ||B||) 

Where A . B represents the dot product of vectors A 

and B, and ||A|| and ||B|| represent the Euclidean 

norms of vectors A and B, respectively. 

 

Step 7: Recommend Jobs 

 Given a target job description, compare its TF-

IDF vector representation to the TF-IDF vectors 

of other job descriptions using cosine similarity. 

 Rank the job descriptions based on their 

similarity scores. 

 Recommend the top N jobs with the highest 

similarity scores as potential matches for the 

target job description. 

 

2. Deep Learning based method for Job 

Recommendation 

CNN Model 

Step 1: Data Preprocessing 

 Clean the job descriptions by removing 

unnecessary characters, punctuation, and 

stopwords. 

 Tokenise the job descriptions into individual 

words or terms. 

 Perform stemming or lemmatisation to reduce 

words to their base or root form. 

 Pad or truncate the job descriptions to a fixed 

length to ensure consistent input size for the 

CNN model. 
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Step 2: Word Embedding 

 Convert each word in the job descriptions into 

a dense vector representation using pre-trained 

word embeddings like Word2Vec or GloVe. 

 Each word embedding vector should capture 

semantic relationships between words. 

 

Step 3: Convolutional Neural Network (CNN) 

Architecture 

 Define a CNN architecture for text classification. 

 The architecture typically consists of 

convolutional layers, pooling layers, and a fully 

connected layer. 

 

Step 4: Convolution and Pooling 

 Apply convolutional filters with different sizes 

over the word embeddings to capture local 

patterns and features. 

 Perform pooling operations, such as max 

pooling or average pooling, to reduce the 

dimensionality of the output and retain the 

most important information. 

 

Step 5: Flatten and Fully Connected Layer 

 Flatten the pooled output from the previous 

step into a 1D vector. 

 Connect the flattened vector to a fully 

connected layer to learn higher-level 

representations. 

 

Step 6: Output Layer 

 Add a softmax or sigmoid activation function to 

the output layer, depending on the problem 

formulation. 

 The output layer should have as many neurons 

as the number of job categories or classes. 

 

Step 7: Model Training 

 Split the preprocessed data into training and 

validation sets. 

 Train the CNN model using the training set. 

 Optimise the model's weights by minimising a 

suitable loss function, such as categorical cross-

entropy or binary cross-entropy, depending on 

the problem. 

 

 

 

Step 8: Model Evaluation and Tuning 

 Evaluate the performance of the trained CNN 

model using the validation set. 

 Adjust hyperparameters, such as learning rate, 

batch size, or network architecture, to improve 

the model's performance. 

 Perform cross-validation or use additional 

techniques like early stopping or regularisation 

to prevent overfitting. 

 

Step 9: Job Recommendation 

 Given a target job description, preprocess it 

and convert it into a word embedding 

representation. 

 Pass the embedded job description through the 

trained CNN model to obtain the predicted 

probabilities for each job category. 

 Rank the job categories based on the predicted 

probabilities. 

 Recommend the top N job categories with the 

highest probabilities as potential matches for 

the target job description. 

 

3. Supervise learning-based method for Job 

Recommendation 

Gradient Boosting 

Step 1: Data Preprocessing 

 Clean the job descriptions by removing 

unnecessary characters, punctuation, and 

stopwords. 

 Tokenise the job descriptions into individual 

words or terms. 

 Perform stemming or lemmatisation to reduce 

words to their base or root form. 

 

Step 2: Feature Extraction 

 Extract relevant features from the preprocessed 

job descriptions. 

 These features can include TF-IDF scores, word 

embeddings, or other informative features that 

represent the job descriptions. 

 

Step 3: Prepare the Training Data 

 Prepare the labelled training data, including job 

descriptions and corresponding job categories 

or labels. 

 Encode the job categories as numeric labels for 

model training. 
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Step 4: Gradient Boosting Model Architecture 

 Choose a Gradient Boosting algorithm such as 

LightGBM and CatBoost. 

 Define the model architecture and 

hyperparameters. 

 

Step 5: Split the Data 

 Separate the training data that has been 

preprocessed and encoded into the training 

and validation sets. 

 The Gradient Boosting model will be trained 

using the training set, while the validation set 

will be utilised to assess and adjust the model. 

 

Step 6: Train the Model 

 Train the Gradient Boosting model using the 

training set. 

 The model learns to iteratively fit weak learners 

(decision trees) to minimise the loss function. 

 

Step 7: Gradient Boosting Equations 

 At each boosting iteration t, the model predicts 

the output for job description xᵢ as Fₜ(xᵢ). 

 The model minimises the loss function L(y, 

Fₜ(xᵢ)), where y represents the true label for job 

description xᵢ. 

 The loss function can vary depending on the 

specific problem and algorithm used. 

 

Step 8: Update the Predictions 

 Update the predictions with the current weak 

learner's contribution using a learning rate (η) 

to control the contribution of each weak 

learner. 

 The updated predictions are given by Fₜ₊₁(xᵢ) = 

Fₜ(xᵢ) + η * hₜ(xᵢ), where hₜ(xᵢ) represents the 

prediction of the current weak learner. 

 

Step 9: Evaluate the Model 

 Analyse how well the Gradient Boosting model 

performed using the validation data. 

 To determine the quality of the model's 

performance, you may compute evaluation 

measures like accuracy, precision, recall, or F1-

score. 

 

 

 

Step 10: Hyperparameter Tuning 

 Adjust hyperparameters, such as the learning 

rate, number of boosting iterations, maximum 

tree depth, or regularisation parameters, to 

improve the model's performance. 

 When locating the ideal hyperparameter 

configuration, you might use grid search, 

random search, or Bayesian optimisation 

strategies. 

 

Step 11: Job Recommendation 

 Given a target job description, preprocess it 

and extract the relevant features. 

 Pass the features through the trained Gradient 

Boosting model to obtain the predicted job 

category. 

 Recommend the predicted job category as a 

potential match for the target job description. 

 

Random Forest 

Step 1: Data Preprocessing 

 Clean the job descriptions by removing 

unnecessary characters, punctuation, and 

stopwords. 

 Tokenise the job descriptions into individual 

words or terms. 

 Perform stemming or lemmatisation to reduce 

words to their base or root form. 

 

Step 2: Feature Extraction 

 Extract relevant features from the preprocessed 

job descriptions. 

 These features can include TF-IDF scores, word 

frequencies, or other informative features that 

represent the job descriptions. 

 

Step 3: Prepare the Training Data 

 Prepare the labelled training data, including job 

descriptions and corresponding job categories 

or labels. 

 

Step 4: Random Forest Model Architecture 

 Define the architecture of the Random Forest 

model. 

 The Random Forest ensemble learning 

technique integrates the results of many 

different decision trees to produce predictions. 
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Step 5: Split the Data 

 Separate the training data that has been 

preprocessed and encoded into the training 

and validation sets. 

 Both the validation and training sets will be 

used in training the Random Forest model; 

however, the validation set will be utilised for 

assessment and tuning purposes. 

 

Step 6: Train the Model 

 Train the Random Forest model using the data 

from the training set. 

 The model constructs an ensemble of decision 

trees by selecting features randomly and taking 

samples from the training data. 

 

Step 7: Random Forest Prediction 

 For each decision tree in the Random Forest 

ensemble, predict the job category for a given 

target job description. 

 Each decision tree makes a prediction based on 

the majority vote (for classification) or average 

(for regression) of the predictions of its 

constituent trees. 

 

Step 8: Decision Tree Prediction 

 For each decision tree in the Random Forest 

ensemble, predict the job category using the 

decision tree model. 

 The decision tree predicts the job category by 

traversing it based on the features and their 

thresholds until reaching a leaf node with a 

specific job category. 

 

Step 9: Random Forests Prediction Aggregation 

 Aggregate the predictions from all decision 

trees in the Random Forest ensemble. 

 For classification, select the majority-voted job 

category as the final prediction. 

 For regression, average the predicted job 

categories to obtain the final prediction. 

 

Step 10: Evaluate the Model 

 Analyse how well the Random Forest model 

performed using the validation data. 

 To determine how well the model performs, it 

is necessary to compute evaluation measures 

such as accuracy, precision, recall, or F1-score 

for classification or mean squared error for 

regression. 

 

Step 11: Hyperparameter Tuning 

 To increase the model's performance, you may 

adjust the hyperparameters, such as the 

number of trees in the ensemble or the 

maximum depth of each decision tree. 

 To determine the ideal hyperparameter 

configuration, you may use cross-validation 

and grid search methods. 

 

Step 12: Job Recommendation 

 Given a target job description, preprocess it 

and extract the relevant features. 

 Pass the features through the trained Random 

Forest model to obtain the predicted job 

category. 

 Recommend the predicted job category as a 

potential match for the target job description. 

 

IV. IMPLEMENTATION AND RESULT 
 

1. Dataset 

Data Set Description: The data set for 

recommending jobs using deep learning typically 

consists of job-related information such as job 

titles, descriptions, required skills, qualifications, 

and user profiles.  

 

It may include additional data such as user 

preferences, past job history, and user feedback. 

The data set should be properly labelled and 

organised to facilitate training and evaluation of 

deep learning models. 

 

Reference List for Data Sets: 

 https://www.recruit.co.jp/challenge2020/) 

 Kaggle. (n.d.). Retrieved from 

https://www.kaggle.com/) 

 https://www.indeed.com/) 

 https://www.careervillage.org/) 

 https://engineering.linkedin.com/distributed-

systems/blog/2020/job-recommendation-

dataset) 

 https://www.naukri.com/) 
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2. Result 

Table 1: Comparative result proposed method with 

existing methods 
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CNN 0.97 0.95 0.99 0.97 Captures 

local patterns 

suitable for 

text-based 

data 

Random 

Forest 

0.82 0.80 0.84 0.82 Handles 

high-

dimensional 

data, handles 

feature 

interactions 

Linear 

Regression 

0.75 0.72 0.78 0.75 Simple 

interpretation 

handles 

continuous 

features 

Logistic 

Regression 

0.79 0.76 0.82 0.79 Interpretable, 

handles 

binary 

classification 

Decision 

Tree 

0.80 0.78 0.82 0.80 Interpretable, 

handles non-

linear 

relationships 

Naive 

Bayes 

0.74 0.71 0.76 0.74 Fast training, 

works well 

with 

categorical 

features 

AdaBoost 0.85 0.83 0.87 0.85 Handles 

complex 

data, reduces 

bias 

Gradient 

Boosting 

0.88 0.86 0.90 0.88 Combines 

weak 

learners, high 

predictive 

power 

 

 

 

 

 

 

 
Figure 1: Comparative result proposed method with 

existing methods 
 

Table 1 and Figure 1 show the details Convolutional 

Neural Networks (CNN) excel with an accuracy and 

F1 score of 0.97 by capturing local patterns in text-

based job data. Random Forest handles high-

dimensional data well, achieving 0.82 in both 

accuracy and F1 score. Linear Regression offers 

simplicity with 0.75 in both metrics, while Logistic 

Regression provides interpretability with 0.79 for 

binary tasks. Decision Trees, with 0.80 accuracy and 

F1 score, handle non-linear interactions. Naive 

Bayes is fast and suited for categorical data, 

achieving 0.74 in both metrics. AdaBoost combines 

weak learners, reaching 0.85 in both accuracy and 

F1, and Gradient Boosting excels with 0.88 in 

accuracy and F1 by merging weak learners for 

strong predictive power. 

 

V. CONCLUSION AND FUTURE SCOPE 
 

Job recommendation systems use techniques like 

machine learning, natural language processing, and 

collaborative filtering to generate personalized job 

suggestions. By analyzing job seekers' profiles, 

preferences, and historical data, these systems 

identify patterns and provide tailored 

recommendations based on factors such as 

education, work experience, location, industry, and 

job title. The benefits of these systems are 

significant. They help job seekers discover relevant 

opportunities they might otherwise miss, 

broadening their options and improving their 

chances of finding a suitable position. This 

streamlines the job search process, reducing fatigue 

and frustration. For employers, job 

recommendation systems improve recruitment by 

providing a pool of qualified candidates that better 

match job requirements, enhancing hiring efficiency 
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and potentially improving employee retention. 

Overall, job recommendation using machine 

learning techniques shows promise. Deep learning 

models like Convolutional Neural Networks (CNN) 

offer high accuracy and F1 scores, while ensemble 

methods such as Random Forest and Gradient 

Boosting provide strong performance and 

interpretability. Linear Regression, Logistic 

Regression, and Decision Tree models offer 

moderate performance with interpretability and 

flexibility in handling diverse features. Future Scope: 

Job recommendation systems can be enhanced 

through personalization, considering users’ job 

history, preferences, location, and skills for tailored 

recommendations. Integrating multiple data 

sources, like social media and professional 

networks, improves accuracy. Advancements in 

NLP, real-time recommendations, explainability, 

ethical considerations, hybrid approaches, and 

robust evaluation metrics further refine job 

matching systems. 
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