
Reena Tiwari, 2024, 12:5

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2024 Reena Tiwari. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Applying Convolutional Neural Networks (CNN) to

Job Recommendation Systems
M. Tech Scholar Reena Tiwari, Assistant Professor Mrs.Vaishali Upadhyay

Department of computer science & engineering

Swami Vivekanand college of engineering, Indore

I. INTRODUCTION

In today's competitive labor market, both job

seekers and employers face the challenge of

matching the right candidates with suitable job

opportunities [1]. Traditional methods, like manual

screening and keyword matching, are often

inefficient, time-consuming, and prone to bias [2].

The rise of machine learning and natural language

processing has enabled the development of

automated job recommendation systems [3]. These

systems aim to match job seekers with relevant

positions by analyzing job descriptions, profiles,

skills, and interests [4].

This research focuses on developing a CNN-based

job recommendation model, as CNNs excel at

recognizing complex patterns in data [4]. Their

hierarchical structure allows them to extract

valuable characteristics from job descriptions,

leading to improved recommendations [6]. We

compare our CNN model with other algorithms

such as Random Forest, Logistic Regression,

Decision Tree, and Naive Bayes, assessing

performance, interpretability, scalability, and

generalization.

To improve model transparency, we explore

interpretability techniques like attention or saliency

maps to enhance trust in the model’s

recommendations. By delivering accurate,

personalized, and unbiased suggestions, the CNN

model has the potential to revolutionize job

matching. This study will benefit both job seekers

and employers by simplifying the recruitment

process and increasing labor market efficiency.

II. LITERATURE REVIEW

VNJobSpace consists of six core components that

independently collect, integrate, and analyze job

advertisements. It includes three databases that

Abstract- This research proposes a Convolutional Neural Network (CNN) model for job recommendations,

comparing its performance with existing methods like Random Forest, Linear and Logistic Regression, Decision

Tree, Naive Bayes, AdaBoost, and Gradient Boosting. The CNN leverages word embeddings to capture semantic

meaning and contextual information from job descriptions, aiming to enhance recommendation accuracy.

Various CNN architectures, including different convolutional layers, filter sizes, and pooling layers, are explored.

The study also examines hybrid approaches and transfer learning using pre-trained models to further improve

performance. Regularization techniques, such as dropout and L1/L2 regularization, prevent overfitting.

Hyperparameters are tuned using grid search or Bayesian optimization. The model’s effectiveness is evaluated

using metrics like accuracy, precision, recall, and F1-score.

Keywords- Convolutional Neural Network (CNN), Job Recommendation System, Word Embeddings, Transfer

Learning, Regularization Techniques.

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

2

store job-related data, the structure of each source,

and collected curricula. Currently, VNJobSpace

users can access over 700,000 job listings from 14

different job sites in Vietnam. Users can explore this

aggregated data, receive career forecasts, and get

advice on courses needed to achieve their desired

jobs [7].

The system uses a Random Forest Regressor

algorithm to assess applicant performance and

recommend the best candidates for a position,

optimizing placement probability and easing the

recruiter’s task. Random Forest builds multiple

decision trees and combines them to provide more

accurate and reliable forecasts, simplifying and

enhancing the recruitment process [8].

Increasingly, companies are selecting candidates

based on resume information, though some

candidates exaggerate their skills. This system also

provides recruiters with a thorough view of a

candidate's technical skills and domain knowledge,

helping organizations ensure the right candidates

access the right career opportunities [9].

The prediction method is based on machine

learning, deep learning, and ensemble models,

tested on large, medium, and small datasets. Our

method outperforms alternative approaches,

achieving high accuracy (0.96, 0.98, and 0.99,

respectively). Surprisingly, "business travel" was

identified as a key factor for employee retention,

more significant than traditional factors like awards

or compensation [10].

In this study, we enhanced a job prediction

algorithm by combining job descriptions and

resumes. Historical delivery weights and user

similarity weights, calculated from job descriptions

and resume data, optimize the system. Tests on real

datasets show that our methods significantly

improve job suggestion accuracy [11].

Job proposals consider both the candidate's

preferences and content-based matching.

Preferences are either mined from rules or

extracted from the candidate's job application

history. Our approach achieves much higher

accuracy compared to basic job suggestion

methods [12].

This study develops a job recommendation system

using collaborative filtering. The system suggests

jobs based on user profiles and calculates a

similarity index between skill sets using Euclidean

distance, then ranks them using the naive Bayes

method. The recommendation system is

implemented in Python [13].

We present a job recommendation model

incorporating Gradient Boosting Regression Tree

(GBRT) with time (T-GBRT). The T-GBRT model adds

time variables and weights to improve prediction

accuracy while reducing computational complexity

through neighbor-based filtering. Experimental

results show that our model performs best across

four criteria compared to other models [14].

We integrate SD-Predictor with YARN to improve

task scheduling and minimize the impact of

misconfigured jobs. Our method achieves 78%

precision, 52% recall, and a 2% false positive rate in

predicting job failures, showing better recall and

false positive rates than related approaches [15].

Our algorithm accurately predicts outcomes using

feedback from previous users. We also propose a

Monte-Carlo Tree Search (MCTS) method to reduce

computational complexity by clustering similar

items. Testing on a large database from Work4

demonstrates our algorithm's superior performance

compared to existing methods [16].

In ideal conditions with significant user and

repository history, we achieved a precision of 0.886

using machine learning and selected attributes.

Despite issues with cold starts, the classifier still

reached an accuracy of 0.729, sufficient for

automatically selecting prominent projects for

developers [17].

Job seekers often spend hours sifting through vast

amounts of online job listings. We simplify this

process by comparing content-based and

collaborative filtering methods. Our system

provides highly accurate job recommendations

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

3

based on applicants' profiles while protecting their

preferences and behaviors [18].

This paper describes a job recommender system

aimed at helping job seekers find suitable positions.

Job offers are collected, processed, and clustered

by characteristics such as titles and technical skills.

Job seeker behavior, including ratings and

applications, is matched with job clusters to

generate a top-n list of recommendations based on

user preferences[19].

III. PROPOSED METHOD

1. Preprocing Method

 TF-IDF vectors to represent the texts.

Step 1: Data Preprocessing

 Clean the job descriptions by removing

unnecessary characters, punctuation, and

stopwords.

 Tokenise the job descriptions into individual

words or terms.

 Perform stemming or lemmatisation to reduce

words to their base or root form.

Step 2: Compute TF (Term Frequency)

 Calculate the term frequency (TF) for each term

in the job descriptions using the equation:

 TF(term, job_description) = (Number of

occurrences of term in job_description) / (Total

number of terms in job_description)

Step 3: Compute IDF (Inverse Document

Frequency)

 Calculate the inverse document frequency (IDF)

for each term in the entire job dataset using the

equation:

 IDF(term) = log((Total number of job

descriptions) / (Number of job descriptions

containing term))

Step 4: Compute TF-IDF (Term Frequency-

Inverse Document Frequency)

 Multiply the TF value of each term in a job

description by its IDF value using the equation:

 TF-IDF(term, job_description) = TF(term,

job_description) * IDF(term)

Step 5: Vector Representation

 Represent each job description as a vector

using the computed TF-IDF scores.

 Each dimension of the vector corresponds to a

unique term in the dataset.

 If a term is present in the job description, its TF-

IDF score is used as the value for that

dimension; otherwise, the value is 0.

Step 6: Similarity Calculation

 Calculate the similarity between job

descriptions using vector similarity measures

such as cosine similarity.

 The cosine similarity between two vectors A

and B is calculated using the equation:

Cosine_Similarity(A, B) = (A . B) / (||A|| * ||B||)

Where A . B represents the dot product of vectors A

and B, and ||A|| and ||B|| represent the Euclidean

norms of vectors A and B, respectively.

Step 7: Recommend Jobs

 Given a target job description, compare its TF-

IDF vector representation to the TF-IDF vectors

of other job descriptions using cosine similarity.

 Rank the job descriptions based on their

similarity scores.

 Recommend the top N jobs with the highest

similarity scores as potential matches for the

target job description.

2. Deep Learning based method for Job

Recommendation

CNN Model

Step 1: Data Preprocessing

 Clean the job descriptions by removing

unnecessary characters, punctuation, and

stopwords.

 Tokenise the job descriptions into individual

words or terms.

 Perform stemming or lemmatisation to reduce

words to their base or root form.

 Pad or truncate the job descriptions to a fixed

length to ensure consistent input size for the

CNN model.

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

4

Step 2: Word Embedding

 Convert each word in the job descriptions into

a dense vector representation using pre-trained

word embeddings like Word2Vec or GloVe.

 Each word embedding vector should capture

semantic relationships between words.

Step 3: Convolutional Neural Network (CNN)

Architecture

 Define a CNN architecture for text classification.

 The architecture typically consists of

convolutional layers, pooling layers, and a fully

connected layer.

Step 4: Convolution and Pooling

 Apply convolutional filters with different sizes

over the word embeddings to capture local

patterns and features.

 Perform pooling operations, such as max

pooling or average pooling, to reduce the

dimensionality of the output and retain the

most important information.

Step 5: Flatten and Fully Connected Layer

 Flatten the pooled output from the previous

step into a 1D vector.

 Connect the flattened vector to a fully

connected layer to learn higher-level

representations.

Step 6: Output Layer

 Add a softmax or sigmoid activation function to

the output layer, depending on the problem

formulation.

 The output layer should have as many neurons

as the number of job categories or classes.

Step 7: Model Training

 Split the preprocessed data into training and

validation sets.

 Train the CNN model using the training set.

 Optimise the model's weights by minimising a

suitable loss function, such as categorical cross-

entropy or binary cross-entropy, depending on

the problem.

Step 8: Model Evaluation and Tuning

 Evaluate the performance of the trained CNN

model using the validation set.

 Adjust hyperparameters, such as learning rate,

batch size, or network architecture, to improve

the model's performance.

 Perform cross-validation or use additional

techniques like early stopping or regularisation

to prevent overfitting.

Step 9: Job Recommendation

 Given a target job description, preprocess it

and convert it into a word embedding

representation.

 Pass the embedded job description through the

trained CNN model to obtain the predicted

probabilities for each job category.

 Rank the job categories based on the predicted

probabilities.

 Recommend the top N job categories with the

highest probabilities as potential matches for

the target job description.

3. Supervise learning-based method for Job

Recommendation

Gradient Boosting

Step 1: Data Preprocessing

 Clean the job descriptions by removing

unnecessary characters, punctuation, and

stopwords.

 Tokenise the job descriptions into individual

words or terms.

 Perform stemming or lemmatisation to reduce

words to their base or root form.

Step 2: Feature Extraction

 Extract relevant features from the preprocessed

job descriptions.

 These features can include TF-IDF scores, word

embeddings, or other informative features that

represent the job descriptions.

Step 3: Prepare the Training Data

 Prepare the labelled training data, including job

descriptions and corresponding job categories

or labels.

 Encode the job categories as numeric labels for

model training.

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

5

Step 4: Gradient Boosting Model Architecture

 Choose a Gradient Boosting algorithm such as

LightGBM and CatBoost.

 Define the model architecture and

hyperparameters.

Step 5: Split the Data

 Separate the training data that has been

preprocessed and encoded into the training

and validation sets.

 The Gradient Boosting model will be trained

using the training set, while the validation set

will be utilised to assess and adjust the model.

Step 6: Train the Model

 Train the Gradient Boosting model using the

training set.

 The model learns to iteratively fit weak learners

(decision trees) to minimise the loss function.

Step 7: Gradient Boosting Equations

 At each boosting iteration t, the model predicts

the output for job description xᵢ as Fₜ(xᵢ).

 The model minimises the loss function L(y,

Fₜ(xᵢ)), where y represents the true label for job

description xᵢ.

 The loss function can vary depending on the

specific problem and algorithm used.

Step 8: Update the Predictions

 Update the predictions with the current weak

learner's contribution using a learning rate (η)

to control the contribution of each weak

learner.

 The updated predictions are given by Fₜ₊₁(xᵢ) =

Fₜ(xᵢ) + η * hₜ(xᵢ), where hₜ(xᵢ) represents the

prediction of the current weak learner.

Step 9: Evaluate the Model

 Analyse how well the Gradient Boosting model

performed using the validation data.

 To determine the quality of the model's

performance, you may compute evaluation

measures like accuracy, precision, recall, or F1-

score.

Step 10: Hyperparameter Tuning

 Adjust hyperparameters, such as the learning

rate, number of boosting iterations, maximum

tree depth, or regularisation parameters, to

improve the model's performance.

 When locating the ideal hyperparameter

configuration, you might use grid search,

random search, or Bayesian optimisation

strategies.

Step 11: Job Recommendation

 Given a target job description, preprocess it

and extract the relevant features.

 Pass the features through the trained Gradient

Boosting model to obtain the predicted job

category.

 Recommend the predicted job category as a

potential match for the target job description.

Random Forest

Step 1: Data Preprocessing

 Clean the job descriptions by removing

unnecessary characters, punctuation, and

stopwords.

 Tokenise the job descriptions into individual

words or terms.

 Perform stemming or lemmatisation to reduce

words to their base or root form.

Step 2: Feature Extraction

 Extract relevant features from the preprocessed

job descriptions.

 These features can include TF-IDF scores, word

frequencies, or other informative features that

represent the job descriptions.

Step 3: Prepare the Training Data

 Prepare the labelled training data, including job

descriptions and corresponding job categories

or labels.

Step 4: Random Forest Model Architecture

 Define the architecture of the Random Forest

model.

 The Random Forest ensemble learning

technique integrates the results of many

different decision trees to produce predictions.

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

6

Step 5: Split the Data

 Separate the training data that has been

preprocessed and encoded into the training

and validation sets.

 Both the validation and training sets will be

used in training the Random Forest model;

however, the validation set will be utilised for

assessment and tuning purposes.

Step 6: Train the Model

 Train the Random Forest model using the data

from the training set.

 The model constructs an ensemble of decision

trees by selecting features randomly and taking

samples from the training data.

Step 7: Random Forest Prediction

 For each decision tree in the Random Forest

ensemble, predict the job category for a given

target job description.

 Each decision tree makes a prediction based on

the majority vote (for classification) or average

(for regression) of the predictions of its

constituent trees.

Step 8: Decision Tree Prediction

 For each decision tree in the Random Forest

ensemble, predict the job category using the

decision tree model.

 The decision tree predicts the job category by

traversing it based on the features and their

thresholds until reaching a leaf node with a

specific job category.

Step 9: Random Forests Prediction Aggregation

 Aggregate the predictions from all decision

trees in the Random Forest ensemble.

 For classification, select the majority-voted job

category as the final prediction.

 For regression, average the predicted job

categories to obtain the final prediction.

Step 10: Evaluate the Model

 Analyse how well the Random Forest model

performed using the validation data.

 To determine how well the model performs, it

is necessary to compute evaluation measures

such as accuracy, precision, recall, or F1-score

for classification or mean squared error for

regression.

Step 11: Hyperparameter Tuning

 To increase the model's performance, you may

adjust the hyperparameters, such as the

number of trees in the ensemble or the

maximum depth of each decision tree.

 To determine the ideal hyperparameter

configuration, you may use cross-validation

and grid search methods.

Step 12: Job Recommendation

 Given a target job description, preprocess it

and extract the relevant features.

 Pass the features through the trained Random

Forest model to obtain the predicted job

category.

 Recommend the predicted job category as a

potential match for the target job description.

IV. IMPLEMENTATION AND RESULT

1. Dataset

Data Set Description: The data set for

recommending jobs using deep learning typically

consists of job-related information such as job

titles, descriptions, required skills, qualifications,

and user profiles.

It may include additional data such as user

preferences, past job history, and user feedback.

The data set should be properly labelled and

organised to facilitate training and evaluation of

deep learning models.

Reference List for Data Sets:

 https://www.recruit.co.jp/challenge2020/)

 Kaggle. (n.d.). Retrieved from

https://www.kaggle.com/)

 https://www.indeed.com/)

 https://www.careervillage.org/)

 https://engineering.linkedin.com/distributed-

systems/blog/2020/job-recommendation-

dataset)

 https://www.naukri.com/)

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

7

2. Result

Table 1: Comparative result proposed method with

existing methods

M
e
th

o
d

A
cc

u
ra

cy

P
re

ci
si

o
n

R
e
ca

ll

F
1
 S

co
re

A
d

v
a
n

ta
g

e
s

CNN 0.97 0.95 0.99 0.97 Captures

local patterns

suitable for

text-based

data

Random

Forest

0.82 0.80 0.84 0.82 Handles

high-

dimensional

data, handles

feature

interactions

Linear

Regression

0.75 0.72 0.78 0.75 Simple

interpretation

handles

continuous

features

Logistic

Regression

0.79 0.76 0.82 0.79 Interpretable,

handles

binary

classification

Decision

Tree

0.80 0.78 0.82 0.80 Interpretable,

handles non-

linear

relationships

Naive

Bayes

0.74 0.71 0.76 0.74 Fast training,

works well

with

categorical

features

AdaBoost 0.85 0.83 0.87 0.85 Handles

complex

data, reduces

bias

Gradient

Boosting

0.88 0.86 0.90 0.88 Combines

weak

learners, high

predictive

power

Figure 1: Comparative result proposed method with

existing methods

Table 1 and Figure 1 show the details Convolutional

Neural Networks (CNN) excel with an accuracy and

F1 score of 0.97 by capturing local patterns in text-

based job data. Random Forest handles high-

dimensional data well, achieving 0.82 in both

accuracy and F1 score. Linear Regression offers

simplicity with 0.75 in both metrics, while Logistic

Regression provides interpretability with 0.79 for

binary tasks. Decision Trees, with 0.80 accuracy and

F1 score, handle non-linear interactions. Naive

Bayes is fast and suited for categorical data,

achieving 0.74 in both metrics. AdaBoost combines

weak learners, reaching 0.85 in both accuracy and

F1, and Gradient Boosting excels with 0.88 in

accuracy and F1 by merging weak learners for

strong predictive power.

V. CONCLUSION AND FUTURE SCOPE

Job recommendation systems use techniques like

machine learning, natural language processing, and

collaborative filtering to generate personalized job

suggestions. By analyzing job seekers' profiles,

preferences, and historical data, these systems

identify patterns and provide tailored

recommendations based on factors such as

education, work experience, location, industry, and

job title. The benefits of these systems are

significant. They help job seekers discover relevant

opportunities they might otherwise miss,

broadening their options and improving their

chances of finding a suitable position. This

streamlines the job search process, reducing fatigue

and frustration. For employers, job

recommendation systems improve recruitment by

providing a pool of qualified candidates that better

match job requirements, enhancing hiring efficiency

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

8

and potentially improving employee retention.

Overall, job recommendation using machine

learning techniques shows promise. Deep learning

models like Convolutional Neural Networks (CNN)

offer high accuracy and F1 scores, while ensemble

methods such as Random Forest and Gradient

Boosting provide strong performance and

interpretability. Linear Regression, Logistic

Regression, and Decision Tree models offer

moderate performance with interpretability and

flexibility in handling diverse features. Future Scope:

Job recommendation systems can be enhanced

through personalization, considering users’ job

history, preferences, location, and skills for tailored

recommendations. Integrating multiple data

sources, like social media and professional

networks, improves accuracy. Advancements in

NLP, real-time recommendations, explainability,

ethical considerations, hybrid approaches, and

robust evaluation metrics further refine job

matching systems.

REFERENCES

1. Stillman, J. “New harvard research”: To be

successful, chase your purpose, not your

passion | inc.com [online]

https://www.inc.com/jessica-stillman/ new-

harvard-research-to-be-successful-chase-your-

purpose-not-your-passion.html, 2019

2. Y. Lin, Y. Huang and P. Chen, "Employment

Recommendation Algorithm Based on

Ensemble Learning," 2019 IEEE 1st International

Conference on Civil Aviation Safety and

Information Technology (ICCASIT), 2019, pp.

267-271, doi:

10.1109/ICCASIT48058.2019.8973135.

3. D. Chakraborty, M. S. Hossain and M. S. Arefin,

"Demand Analysis of CSE Graduates of Different

Universities in Job Markets," 2019 International

Conference on Electrical, Computer and

Communication Engineering (ECCE), 2019, pp.

1-6, doi: 10.1109/ECACE.2019.8679511.

4. J. Zhenhong, P. Lingxi and S. Lei, "Person-Job Fit

model based on sentence-level representation

and theme-word graph," 2021 IEEE 5th

Advanced Information Technology, Electronic

and Automation Control Conference (IAEAC),

2021, pp. 1902-1909, doi:

10.1109/IAEAC50856.2021.9390614.

5. SysNucleus (2019) Webharvy web scraper

6. Recsys (2012) Recommender systems-how they

works and their impacts: Content-based

filtering

7. V. -A. Ngo, T. -T. -N. Doan, T. -T. Le, T. -H. Tran

and B. -L. Do, "Exploration and Integration of

Job Portals in Vietnam," 2020 RIVF International

Conference on Computing and Communication

Technologies (RIVF), 2020, pp. 1-6, doi:

10.1109/RIVF48685.2020.9140732.

8. S. Gupta, A. Hingwala, Y. Haryan and S. Gharat,

"Recruitment System with Placement

Prediction," 2021 International Conference on

Artificial Intelligence and Smart Systems (ICAIS),

2021, pp. 669-673, doi:

10.1109/ICAIS50930.2021.9395768.

9. T. Subha, R. Ranjana, B. Aarthi, S. Pavithra and

M. S. Srinidhi, "Skill Analysis and Scouting

Platform Using Machine Learning," 2022

International Conference on Communication,

Computing and Internet of Things (IC3IoT),

2022, pp. 1-6, doi:

10.1109/IC3IOT53935.2022.9767872.

10. N. B. Yahia, J. Hlel and R. Colomo-Palacios,

"From Big Data to Deep Data to Support People

Analytics for Employee Attrition Prediction," in

IEEE Access, vol. 9, pp. 60447-60458, 2021, doi:

10.1109/ACCESS.2021.3074559.

11. Peng Yi, C. Yang, Chen Li and Y. Zhang, "A job

recommendation method optimized by

position descriptions and resume information,"

2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation

Control Conference (IMCEC), 2016, pp. 761-764,

doi: 10.1109/IMCEC.2016.7867312.

12. A.Gupta and D. Garg, "Applying data mining

techniques in job recommender system for

considering candidate job preferences," 2014

International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), 2014, pp. 1458-1465, doi:

10.1109/ICACCI.2014.6968361.

13. S. Choudhary, S. Koul, S. Mishra, A. Thakur and

R. Jain, "Collaborative job prediction based on

Naïve Bayes Classifier using python platform,"

2016 International Conference on Computation

 Reena Tiwari. International Journal of Science, Engineering and Technology,

 2024, 12:5

9

System and Information Technology for

Sustainable Solutions (CSITSS), 2016, pp. 302-

306, doi: 10.1109/CSITSS.2016.7779375.

14. Pengyang Wang, Yingtong Dou and Yang Xin,

"The analysis and design of the job

recommendation model based on GBRT and

time factors," 2016 IEEE International

Conference on Knowledge Engineering and

Applications (ICKEA), 2016, pp. 29-35, doi:

10.1109/ICKEA.2016.7802987.

15. T. Hongyan, L. Ying, W. Long, G. Jing and W.

Zhonghai, "Predicting Misconfiguration-

Induced Unsuccessful Executions of Jobs in Big

Data System," 2017 IEEE 41st Annual Computer

Software and Applications Conference

(COMPSAC), 2017, pp. 772-777, doi:

10.1109/COMPSAC.2017.191.

16. S. Dong, Z. Lei, P. Zhou, K. Bian and G. Liu, "Job

and Candidate Recommendation with Big Data

Support: A Contextual Online Learning

Approach," GLOBECOM 2017 - 2017 IEEE

Global Communications Conference, 2017, pp.

1-7, doi: 10.1109/GLOCOM.2017.8255006.

17. R. Nielek, O. Jarczyk, K. Pawlak, L. Bukowski, R.

Bartusiak and A. Wierzbicki, "Choose a Job You

Love: Predicting Choices of GitHub Developers,"

2016 IEEE/WIC/ACM International Conference

on Web Intelligence (WI), 2016, pp. 200-207,

doi: 10.1109/WI.2016.0037.

18. Pradhan, R., Varshney, J., Goyal, K., Kumari, L.

(2022). Job Recommendation System Using

Content and Collaborative-Based Filtering. In:

Khanna, A., Gupta, D., Bhattacharyya, S.,

Hassanien, A.E., Anand, S., Jaiswal, A. (eds)

International Conference on Innovative

Computing and Communications. Advances in

Intelligent Systems and Computing, vol 1387.

Springer

19. Patel, R., Vishwakarma, S.K. (2020). An Efficient

Approach for Job Recommendation System

Based on Collaborative Filtering. In: Tuba, M.,

Akashe, S., Joshi, A. (eds) ICT Systems and

Sustainability. Advances in Intelligent Systems

and Computing, vol 1077. Springer, Singapore.

