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1.1. INTRODUCTION 

The drift for pricing optional derivatives began  

in 20th century with the creation of the Black- 

Scholes model in 1973 that evolutionary 

changed the world of financial markets. A most 

valued theoretical framework used by traders 

and investors to purchase, sell or invest in 

portfolios respectively in the trading markets. 

The importance in pricing derivatives under 

the premise of continuity property of the 

volatility has been offered by Black and 

Scholes (1973). Nevertheless, empirical data, 

according to Bakshi et al. (1997), indicates that 

asset volatility is not constant but rather varies 

over time, a phenomenon known as stochastic 

volatility. Accurately pricing options in real-

world markets requires an understanding of 

stochastic volatility and the incorporation of 

this volatility into option pricing models. The 

early works attempted to capture stochastic 

volatility focused on continuous-time models, 

such as the work of Cox and Ross (1976) and 

Cox et al. (1985), which laid the foundation for 

understanding the structure of interest rates 

and option pricing under various stochastic 

processes. However much the models would 

predict the approximate returns, there were 

more un answered questions, Heston (1993) 

proposed the discrete-time models have 

gained popularity due to their computational 

flexibility and tractability in capturing empirical 

features of asset price dynamics. 

In the literature of Brennan (1979) introduced 

discrete-time models for pricing contingent 

claims, paving a way for further developments 

in option pricing theory. Building on to this 

framework, researchers have concatenated 

stochastic volatility into discrete-time models 

Abstract: This paper displays derivation of the univariate and multivariate GARCH (1,1) model. 

The Stochastic Discount Factor and conditional Esscher transform were used as techniques to 

derive the models. The matrix discretized form of the multivariate equation is also displayed in 

this paper with a proposed error correction in the normalized and variance matrices. Standard 

assumptions on the parameter were critically assigned and set to ensure convergences and 

stability for the models. The simulations in the risk-neutral processes shown approximate values 

as Mont Carlo simulations in Duan (2000) with values of the standard deviation ranging from 

[0.0999, 0.5623] and payoff European call options [0.00, 1.1692]. Using python and R 

programming tools, simulations showed that the risk neutral processes and the multivariate 

GARCH (1,1) can be used to predict returns and even price derivatives.  

Key words: GARCH (1,1), martingales, stochastic processes, risk-neutral measures, volatility, 

multivariate, running and conditional correlation. 

 



Bitakwate Jackila Eliot.  International Journal of Science, Engineering and Technology,   
2024, 12:5 

to better reflect the dynamics of financial 

markets. One notable approach is the 

Generalized AutoRegressive Conditional 

Heteroskedasticity (GARCH) model proposed 

by Bollerslev (1986), which calls for time-

varying volatility dynamics. 

Heston and Nandi (2000) provide a framework 

which accounts for multiple time lags in the 

variation of the variance dynamics and permits 

the relationship between variance and the 

current asset’s returns in addition. By including 

Heston (1993) closed-form stochastic volatility 

model as a continuous-time limit, the single 

lag version of the model brings together the 

discrete-time modeling of GARCH with the 

continuous-time random volatility approach 

to option valuation.  

In light of these developments, this research 

aims to further study and explore the role of 

stochastic dynamics in discrete-time pricing 

derivatives, with a focus on incorporating 

Multivariate GARCH model. With all the 

literature, challenges persist in estimating model 

parameters and evaluating model performance 

accurately, as highlighted by Bakshi et al. (1997) 

and Zhang (2024). Consequently, there is an 

urgent need for tackling both practical and 

theoretical problems by improving discrete-time 

option pricing models that accurately account for 

stochastic volatility dynamics. This paper is aimed 

at extending the existing models by including 

GARCH drifts and refining parameter estimation 

methods, provide more insights on the 

Multivariate GARCH (1,1) and one dimensional 

GARCH models ultimately increasing the accuracy 

of the pricing in dynamic financial environments. 

The determination of parameters as proposed 

by Bollerslev (1986) governing the risk-neutral 

dynamics of GARCH model holds paramount 

significance in financial modeling and risk 

management, decision making of portfolio 

allocations and spillover effects of one market 

onto the other. Financial markets often exhibit 

correlations between price dynamics and 

patterns in volatility which is really 

unresponsive in daily market. In asset 

allocation under portfolio, it is more important 

to account for interconnection to preciously 

manage risk and make good decisions. 

Therefore, the approximate refining of the 

parameters. Black and Scholes (1973) 

proposed that estimating and refining of these 

parameters accurately helps financial 

institutions to enhance option pricing 

accuracy, Duan (1995) suggested that it refines 

risk management purpose of studying the 

dynamics of variance swaps in the daily market 

as Badescu and Kulperger (2008) indicated is 

to provide inward knowledge of merging the 

existing volatility of an asset as an index, not 

considering options. The study of this 

parameter technique, helps investors make 

decisions on when to benefit during the 

comparisons of the greatness of strike degree 

and volatility. In addition, Laurent (2021) 

stated that MuGARCH models provide a 

present platform for modeling of double- 

dimension volatility dynamics among multiple 

assets simultaneously by capturing the 

connections of their price movements. In this 

paper, we contribute to the ongoing 

discussions in estimating of parameters in the 

discrete-time setting of GARCH (1,1) option 

pricing and risk management. 

2. Literature Review 

2.1 Historical Background Of the literature 

On Option Pricing models 

Creating option pricing models that can incorporate 

stochastic volatility and manage both discrete and 

continuous time frames has been a persistent area of 

attention in recent years. As an example,  Heston et 

al. (2024) presented a novel discrete-time option 

pricing model with stochastic volatility that is 

closed-form. These models provide useful tools 
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for pricing and hedging derivatives in dynamic 

market conditions by attempting to find a 

compromise between mathematical tractability and 

empirical applicability.  

2.2 Option Pricing Models 

In this section, we shall look at the common 

option pricing models: Black Scholes, Heston 

and Nandi GARCH models all used for option 

pricing. 

2.2.1 Black Scholes model.  

This model was developed by Black and 

Scholes (1973) and stated as equation (2.2.4) 

provides prior knowledge for pricing 

European-style options. The fundamental 

assumption in this model is that there is 

continuous trading and constant volatility in 

the daily market. Black and Scholes (1973) 

derived the Black-Scholes differential 

equation, governing the dynamics of the 

option price. In fair options pricing, they 

constructed the model basing n the following 

conditions; 

• short-time interest rate is constant and 

known before time for maturity. 

• one could invest, save or borrow money with 

short-time interest rate. 

• The stock price, st is based on Ito’s process 

with the constant drift and volatility 

constants. 

The above assumptions provide the equation 

of the stock price as 

𝒅𝒔𝒕 =  𝝁𝒔𝒕𝒅𝒕 + 𝜹𝒔𝒕𝒅𝒘𝒕  (2.2.1) 

 
11 Consider the distribution such that  t dt t t tX X dt dt z + = + +  where 𝑧 is a standard Gaussian, then perform 

Taylor expansion to obtain the equation

2 2 21 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( )

2 2
t dt t t t t t t t t tf X f X f X dt f X dt o dt f X dt z f X z dt o dt   +

   
   = + + + + + − +   

   
 

where µ and δ are the respect constant 

coefficients of the drift/deterministic and 

wiener process 𝒘𝒕 is the random wiener 

process. Applying Ito’s equation 1 on the 

considered derivative option written on the 

asset with price. Equation (2.2.1) represents the 

dynamics of the option over time. The solution 

to the equation is given as  

𝒔𝒕 = 𝒔𝟎 [(𝝁 −
𝟏

𝟐
𝜹𝟐)] 𝒕 +  𝜹 𝒘𝒕 (2.2.2) 

The proof can be found in the appendix (7.1). 

Note that in the proof there is no corollaries 

and lemma. It consists direct derivation. Using 

theorem (2.51), the mathematical 

computations show that the Black Scholes 

option pricing model becomes  

( )

1 2( , ) ( ) ( )r T t

tC S t S F d Xe F d− −= −    (2.2.4) 

Where:
2

1 2 1

ln( / ) ( / 2)( )
  ,tS X r T t

d d d T t
T t






+ + −
= = − −

−
 

is the constant interest rate, F (·) is the 

cumulative distribution function of standard 

normal, 𝑆𝑡 is the stoke price, X is the strike price 

and T is the expiry time or time to maturity, σ 

in d1 and d2 is the volatility of the underlying 

asset. In the work, Cox and Ross (1976) 

extended equation (2.2.1) to derive the option 

pricing formula using the principles in risk-

neutral measure and considering alternative 

random processes for asset prices. Their 

contributions primarily focused on extending 

the model to accommodate discrete- time 

settings which addressed important 

limitations of the original continuous-time 

Black-Scholes model. In addition, Brennan 

(1979) explored the pricing of contingent 
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claims in discrete-time models. He derived the 

option pricing formula using a binomial tree 

approach: 

0

0

(1 ) max{0, }
N

j N j j N j

j

N
C p p S u d K

j

− −

=

 
= − − 

 
 (2.2.5) 

Equation (2.2.5) represents the price of the 

European call option in a discrete-time setting, 

where N is the number of time steps, p is the 

probability of an up movement, u and d are the 

up and down factors in the binomial tree 

model, and S0 is the current price of the 

underlying asset. The reasons for this could be 

as suggested in 1. 

Black and Scholes (1973) assumed a non-

varying volatility while MoralesBan˜uelos et al. 

(2022) and Christie (1982) assumed volatility as 

a deterministic function of time. The 

assumptions made in these models are 

violated with strong evidences by many 

empirical studies that the volatility surface 

displays skew effects. It is not clear why 

volatility exhibits this effect, but rather many 

explanations show that the returns in a market 

have high positive kurtosis (greater than 3) 

than normal values. 

2.2.2 GARCH(p,q) model.  

In everyday markets, the volatility randomly 

shifts and therefore all models with defined 

terms of this volatility have to exhibit the 

reflection of this domestic randomness. The 

assumption of a constant volatility in Black-

Scholes however doesn’t account for the 

empirical observations which suggests that 

volatility exhibits clustering and time-varying 

behavior Christie (1982). To address this 

limitation, researchers have developed 

 
1 The Black-Scholes model assumes that the underlying asset’s returns are normally distributed, which implies a log-

normal distribution for the asset prices. When the market exhibits a volatility change, the models exhibit non-log-

normal distributions of the returns. The disparity, including shifts in market sentiment, dynamics of supply and 

demand, or the effect of market events on option pricing. 

 

stochastic volatility models such as Heston 

(1993) model, which assumes volatility follows 

a mean-reverting process. Despite its 

flexibility, the Heston model lacked analytical 

tractability, motivating the search for 

alternative approaches. The GARCH (p, q) 

model was represented as: 

2 2 2

0

1 1

p q

k i k i j k j

i j

    − −

= =

= + +   (2.2.6) 

Where:  2

k  is the conditional variance at time 

t, α0  is a constant, αi are the coefficients of the 

past squared error terms, βj are the coefficients 

of the past conditional variances, p indicates 

how many past squared error terms are 

included in the conditional variance equation 

to capture the persistence of volatility, q 

indicates how many past conditional variances 

are included in the conditional variance 

equation to capture the short-term effects on 

volatility. There are many different 

formulations that came up after the discovery 

of the GARCH model. This paper is aimed to 

focus on GARCH frameworks for option 

pricing. In the market setting, GARCH option 

pricing models in Duan (1995) provided a 

better suit for an interesting alternative to 

stochastic volatility option pricing models with 

martingale probability set of distributions 

{ , }Q P =  and the conditional variance as 

2

1 1

( ) , ~ (0,1)
p q

k i k i i k i

i i

h h

     − −

= =

= + +  (2.2.7) 

Heston (1993) proposed that for any asset 

associated to a risky in a discrete time setting

{ | 1, , 1}k k t= −  the continuously 
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compounded return process can be structured 

as 1 

log k
k k k k

k

S
y r h h

S

   += = + +            (2.2.8) 

With   is the market price of risk,  and  in 

  and martingale measure,  which depends 

on the historical probability, . kS  is the 

pricing process. Using this model, the 

subsequent contingency claims 2 cannot 

currently be valued because it is unknown how 

risk neutral measures will be distributed. This 

shall be discussed in the coming chapters. The 

necessary and sufficient condition for the 

presence of a stationary solution to the GARCH 

model was developed by Bollerslev (1986).  

2.2.3 Theorem. The GARCH (p ,q) mode stated 

in equation (2.2.6)  is steady if    

 
1 1

1
p q

i j

i j

 
= =

+      (2.2.9) 

Stability is necessary for the GARCH model to 

effectively model and analyze financial 

volatility by ensuring that the model's 

estimates are precise, dependable, and 

understandable, which increases the model's 

value for understanding and managing risk in 

financial markets. 

2.2.4 Affine Heston Nandi GARCH models. 

According to the historical probability, 

Alexandru and Ortega considered Equation 

(2.2.8) to be the discretized version of the 

Heston and Nandi (2000) model. 3 For trade 

dates with equal sub interval, they took into 

consideration that ∆ = 1 . Alexandru and 

Ortega literature indicates that the general 

 
1 The equation (2.2.8) works for some risk premium parameter λ in a martingale historical probability, and martingale 

measure 
2 derivatives whose future payoffs depend on the values of another underlying assets or is dependent on the realization 

of some uncertain future event. 
3 Affine GARCH models often extend the traditional GARCH framework by incorporating additional parameters. 

 

discretized dynamics of an affine version of 

GARCH(1,1) may be found using; 

1( , ( ))k k k ky f h h =  +              (2.2.10) 

1 2 3( , ( )) ( , , ( )).k k k kh f h f h  + =  +    (2.2.11) 

In this case, k  is a series of 1k−  field condition 

to identically independent random variables 

with a finite moment generating equation and 

to guarantee the positiveness and stationary 

conditions of variance actions, a vector 

parameter   adhere to certain conditions. 

Using equation (2.2.6), we can see that 1f  and 

2f  are affine in kh , and that the innovation 

distribution determines the shape of the news 

function 3f .  

Alexandru and Ortega  interpreted the 

conditional variance process in 1k−  

predictable process to be the only component 

generating the log-return ky  dynamics 

defined as  

 1Var |k k kh y −=          (2.2.12) 

2.2.5 Multivariate HN GARCH model.  

In this section, we represent the multivariate 

model, and it’s existing cumulant generating 

function. Escobar et al. (2019) and Alexandru 

and Ortega proposed an assumption that the 

model is affine 

2.2.6 Assumption. If the joint cumulant 

generating function exists and affine inform

( )
( 1) ( 1)( , )| ( 1, ) ( 1, ), ( , ) ( , )

k k ky h k k k k kh       
+ − − −= +

(2.2.13) then it is structured and defined as

( ) ( )
( 1) ( 1)( , )| 1 E p, log ex |

k k ky h k k ky h   
+ − −

 = +
  
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− 

(2.2.14) where ( 1, ) ( , )k k  − and ( 1, ) ( , )k k  − are 

real valued functions with respective martingale 

states 

The assumption for this definition is justified 

by following the next proposition, which states 

that this martingale measure has to have a 

moment generating function given a field of 

market information. 

In this paper is aimed at deriving the 

parameters of risk neutral measures for the 

general discrete time of equation (2.2.10) 

following the exponential pricing kernel, we 

also derive the risk neutral dynamics under the 

stochastic discount factor and the conditional 

Esscher transform tool commonly used for 

actuarial mathematicians. 

2.3 Exponential pricing kernel 

Understanding, assessing, and managing 

several kinds of risks in financial markets, such 

as volatility risk, is made possible by setting the 

best pricing kernel. By considering investors’ 

expectations and risk preferences, the pricing 

kernel guides investment decisions and risk 

management strategies in a turbulent and 

dynamic market environment. Escobar et al. 

(2019), Alexandru and Ortega literature 

suggested the approach for determining the 

exponential pricing kernel is projected from 

the papers Christoffersen et al. (2013) and 

Majewski et al. (2015) for determining the 

cumulant generating function of the affine 

GARCH model following lemma (3.0.1) The 

pricing equation 1 is a pricing kernel. The 

accompanying risk prices, 1  and 2 , and their 

corresponding effects on the pricing kernel are 

 
1  The pricing exponential equation is given by  

( )1 2 1 2 ( 1)

1

: exp ( ) ( ) ( , ) ( ), ( )| |
T

T n

k k k k k

k

dQ
y h C y h

dP



    − 

=

 =  +  −  
    

2 If in most cases asset prices are lower than expected, arbitrageurs statistically would step in to buy the asset, and if its 

higher the discrepancy between the observed price and the expected value is eliminated 

 

reflected in the formula, which accounts for 

changes in variance and equity in the context 

of lemma (3.0.1) presented in the chapter (3). 

2.4 Martingale measure 

In a real market, we have to believe that asset 

prices approximate the behavior of a 

martingale at a minimum of a short term. The 

accuracy hypothetical statement in the market 

is that the update information is immediately 

transited to stock value, so expected value of 

the stock tomorrow absolutely should be the 

value today 2.  

2.4.1 Definition (Martingales). For the 

probability space S with a sequence of real 

random variables 0 1 2, , ,X X X  Interpret iX  as 

the price of the asset at the i  th time step, then 

the sequence nX  is a martingale if [| |]nX   

and 1[ | ]n n nX X+ =  (2.4.1) 

for all n.  

In simple terms we may say a martingale of 

price of an asset is defined as “Given all I know 

today, expected price tomorrow is the price 

today”. For a continuously compounded 

returns, Heston and Nandi (2000) mentioned 

that any portfolio’s discounted price can be 

determined by substituting the derived 

assumption from equation (2.4.1) and 

equation (2.5.3) with risk rate, r  in the 

martingale  i.e.  

 1| exp( )E k ky r− =   (2.4.2) 

For the deep characterization in martingale 

measure , if there exists a moment 

generating function say [ ] , 1k k

k

h

yM E e k


=     

file:///C:/Users/OnbillBoard/Desktop/research/AIMS_Research__Jackila_%20(2).docx%23_bookmark24
file:///C:/Users/OnbillBoard/Desktop/research/AIMS_Research__Jackila_%20(2).docx%23_bookmark138
file:///C:/Users/OnbillBoard/Desktop/research/AIMS_Research__Jackila_%20(2).docx%23_bookmark50
file:///C:/Users/OnbillBoard/Desktop/research/AIMS_Research__Jackila_%20(2).docx%23_bookmark49


Bitakwate Jackila Eliot.  International Journal of Science, Engineering and Technology,   
2024, 12:5 

for some constants 1 2, ,   then the 

stochastic sequence 1( )n nZ   is called a 

martingale with   

0 1Z =     (2.4.4) 

and  

 1 1

exp
, 1

exp |

k k
n

k k k k

y
Z n

y



 −

=  .   (2.4.5) 

The significance of properties (2.4.4) and 

(2.4.5) becomes particularly evident when 

undergoing a measure change. 

2.4.2 Theorem. Suppose that the set of all 

equivalent martingale measures,  is 

nonempty. Then the family of arbitrage-free 

prices at time k  of a derivative security with 

payoff ( )kh S  is non-empty and is given by 

equation (2.4.2.1)1:  

Proof. The proof of the theorem follows 

immediately by replacing the simple 

expectations from the proof of Theorem 1.30 

(see Follmer and Schied (2004), page 18-19) 

with conditional expectations. 

2.5 Risk Neutral Distributions. 

In a realistic market, models like equation 

(2.2.4) can be used to price options under the 

historical probability . In the risk-neutral 

 
1 The equation of the security derivatives is given by 

 1( ( )) {sup ( ) }, where [ ( ) | ]|
T

k

k k

r

t T T k T kh S e h S h S


= +

−



 
  =  
 
 

 

2 The integral/ continuous version of the theorem is given by  exp{ ( ) 0.5 ( ) }k k

d
X X

d
= − −   

Such that kX  subsequent process and  

   
0 0

( ) , ( ) , (& )
k k

k k k k s k s sW W X X X ds X X dW= +   =  =  subject to the assumption 

2 2

0
E

T

s sX Z ds   
    

 

markets, equivalent option pricing models are 

required with complete martingale continuous 

state, . The generation of these equivalent 

models require the Girsanov theorem stated 

below. Elliott and Madan (1998) proposed that 

in state prices can expressed as conditional 

expectation as 

2.5.1 Theorem (Girsanov Theorem)2. For a 

wiener process kW  with a historical probability 

, then there exists an equivalent martingale 

  is defined by the ration.  

The discrete version of theorem is given by 

the equation  

 
2

1 1

exp ( ) 0.5 ( )
n n

i i

i i

d
X X

d = =

 
= −  −  

 
  with 

the change of martingale state for the 

continuous or discrete return process ky . 

2.5.2 Conditional Risk-Neutral Measure. 

let it be a risk neutral distribution subject to a 

martingale measure   the dynamics are 

given by simplified system of equation (2.2.8) 

and (2.2.7), such that 

k k k ky m h = +     (2.5.3) 

where km  is the unknown parameter in the 

risk state  
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2

1 1 , ~ (0,1)k k kh h      − −= + +  (2.5.4) 

The task here is to verify that   is a 

martingale measure which shall be discussed 

in next chapter. This paper focuses on 

discrete time frames of ky  with 1 =  

2.5.3 Stochastic Discount Factor. Hansen 

and Richard introduced the notion of the 

stochastic discount factor (SDF) in 1987. The 

stochastic process kM which is measurable 

with regard to the filtration k is known as an 

SDF. Alexandru and Ortega stated a version 

of the fundamental theorem of asset pricing, 

assuming that there is no arbitrage in the 

market. They demonstrated that the price of 

a contingent claim with a payout of ( )Th B  at 

time k . The associated with the family of SDF 

0( )k k TM    is given by: 

 1( ( )) ( ) |
k

P

M T k T T kh B M M h B+ =   (2.5.5) 

The no-arbitrage opportunities are 

eliminated by making the following 

assumptions. 

1[ | ] r

k kM e−− =    (2.5.6) 

1[ | ] 1ky

k kM e − =    (2.5.7) 

In relation to the stochastic Discount Factor, 

Duan (1995) presented the Locally Risk 

Neutral Valuation Relationship (LRNVR) for 

pricing under the normality assumption for 

the stock innovations and postulated that the 

martingale measure  with the LRNVR 

satisfies the following two conditions: 1,k kY−  

and  1 1Var [ | ] Var [ | ]k k k kY Y− −=   

The next theorem introduces the definition of 

a one-period stochastic discount factor (SDF) 

 
1 For a discount factor  , marginal utility of consumption at time, k and level of consumption, C then SDF is defined 

as: 1( )

( )

k
k

k

u S
M

u S
 +


=


 

1,drawing on the work of Hansen and Renault 

(2009). The following parameter limitation is 

obtained from definition in  for pricing the 

return process ky  in equation (2.2.8).  

2.5.3 Theorem  One-period Stochastic 

Discount Factor 8 (SDF)). If ( )k TM  for 

{1, , }k T   is a positive process, then  -field 

of filtration ( )t k  . One-period stochastic 

discount factor process hold if for {1, , }k T  : 

1

1

1E |P k
k k

k

S
M F

s
−

−

 
= 

 
(2.5.8) 

2.6  Conditional Esscher Transform. 

The clear approaches to Esscher Transforms 

were introduced by Yang and Sui (2004), and 

was first introduced by Esscher (1932). Yang 

and Sui (2004) offered an elegant way to 

select an equivalent martingale measure in an 

incomplete market setting which takes a 

probability density ( )f x  and transforms it to 

a new probability density ( ; )f x h  with a 

parameter h . 

( )
( ; ) ,

( )

ht

X

ht

X

e M t
f x h

e M t dt

−


−

−

=


  (2.6.1) 

tx

X X
-

where M (t) M (t)= e f (x)dx  


  

Here, ( )XM t  is the MGF of the original 

distribution.  

3 Methods of Modelling 

In this section, we show how to derive the risk 

neutral process, ky  using various approaches. 

In addition, we also develop the multivariate 

cumulant generating function of the risk 

neutral measure. Alexandru and Ortega stated 

that in order to derive the risk neutral 
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measures, we need the radon- Nykodime 

derivative for change of measure. This is very 

important thought the derivations. 

 3.01 Lemma Radon-Nykodime derivative. 

Elliott and Madan (1998) and Follmer and 

Schied (2011) expressed  to be a probability 

measure equivalent w.r.t.  on a  −  field with 

a filter constructed by T . For any 0 k T  , TZ  

is Radon-Nikodym derivative with properties 

• P.1 The conditional Radon-Nikodym 

derivative of  w.r.t.  on k  is given by

: | |
k kk

dQ dQ
Z E

dP dP

 
= =  

 
 (3.0.1) 

In particular, kZ  is a k  mean one 

martingale under . 

• P2 For any s  ( s k ) and -integrable 

measurable function g , we have: 

[ | ] |
k

s
k

k

Z g
E g E

Z

 
=  

 
  (3.0.2) 

The most important property is property 

(3.02) referred to in the conditional 

expectation for the Bayes rule in 

probability, whereas property (3.01) is a 

simple application of the tower property 

for the conditional expectations. 

 3.1 Risk neutral dynamics under SDF 

The proceeding theorem demonstrates how to 

create a risk-neutral measure through 

observation made by follmer2011stochastic to 

describe the pricing of a contingent claim 

using the relations (2.5.5) and equation (2.4.6) 

in theorem (2.4.2). 

3.1.1 Theorem Let 0( )k k T    be a family of 

stochastic discount factors (SDF) satisfying the 

conditions specified in (2.5.3). Let  be a 

measure defined by its density: 

1

1

: , 1

T

k k

k

Tr Y

T k

k

dQ
Z e M k

dP
=

=


= =    (3.1.1) 

with (2.4.4). Then   and the prices in 

equation (2.5.5) and equation (2.4.6) are 

consistent. 

The objective is to demonstrate, by means of 

qualities (2.4.4) and (2.4.6), whether the 

corresponding probability measure  is a 

martingale. Since the market is imperfect, as 

we previously said, there are a number of 

possible approaches to derive the risk-neutral 

dynamics using the stochastic discount factor. 

The utilization of equation under theorem 

(3.1.1) is strictly emphasized in this study. 

3.2 Risk neutral dynamics under Duan's 

LRNV 

In this section, we represent the format and 

main points that arise from this analysis. We 

start by deriving the equation of the returns 

with the risk neutral measures. Using equation 

(2.5.3) under the martingale measure  and 

equation (2.2.8) under the historical 

probability . This approach of derivation is 

appropriate if the representative is an 

expected utility maximizer and utility function 

is time separable and additive, then LRNV 

(Locally Risk Neutral Valuation) holds under 

any of the following conditions;  
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• Utility function1 is of constant risk aversion 
2 and the changes in the aggregate 

consumption are distributed normally 

under  

• The mean and variances are constant.3    

• The utility function is linear. 

3.2.1 Unknown parameter, km  

 We begin by considering the martingale 

measure  and equation (2.4.2). The 

expectation of the log-returns shows that the 

unknown parameter is given km  shown below  

0.5k km r h= −  

Proof.    From equation (2.4.2) and using the 

log-normal definition, we have  

1 1| |k k kk
m h Zy

k kE e E e
+

− −
   =

   
 

       
0.5k km h

e
+

=  

Using equation (2.4.1), we have  
0.5k km hre e

+
=

which implies that 0.5k kr m h= + thus  

0.5k km r h= −  

3.2.2 Conditional variance. The equation 

(2.5.4) is the general formula. Using the 

presumptions of \cite{Hansen} and 

\cite{heston2000}, the i.i.d random variable 

formula k  in  is given  

 ( )0.5k k kh z = − +  

 
1 let us assume that the dynamics of the risky asset in the Lucas economy with the innovations tz  are Gaussian, and 

that the underlying utility function is isoelastic given  

1 1
( ) ,

1

x
u x





− −
=

−
 

where   is e relative risk aversion coefficient. 
2  Risk aversion is the tendency to avoid risk. The term risk-averse describes the investor who chooses the preservation 

of capital over the potential for a higher-than-average return 
3 Constant mean and variance ensure the interest rate is also constant 

 

Proof . The proof takes an assumption that for 

equilibrium, two dynamics in  and  are 

such that 

 
k ky y=  

 k k k k k kr h h m h z − + = +  

 0.5k k k k k kr h h r h h z − + = − +  

 ( )0.5k k k k kh h h z = − +  

 ( )0.5k k kh z = − +  

Substituting in the equation (2.5.4), we have,  

( )
2

1 1 1 1 10.5k k k kh h h z   − − −
 = + + − +
 

(3.2.1) 

On substituting the unknown parameter km  is 

the conditional average return, the risk neutral 

dynamics gets exactly the same format as that 

of Heston and Nandi (2000) The Duan's LRNV 

can be discussed using the stochastic Discount 

approach.  

3.3 Risk Neutral dynamics under 

Conditional Esscher Transform 

Another version of the risk neutral measure is 

the conditional Esscher transform version. 

According to Buhlmann et al. (1996), who first 

suggested it for the generalized time jumps.  

To the little of my understanding, Gerber and 

Shiu (1994) were the first to use Esscher 

transforms in the context of option pricing for 

an incomplete market. In this section we use 
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the comparable articulation of the research of 

Gerber and Shiu (1994) which proposed the 

use of exponential affine parameterized form 

of the SDF. We assume that the moment 

generating function 1,  kM  of log return 

processes with respect to 1k−  is unique and 

exits such that equation (2.4.3) i.e. 

1( ) [ | ] , 1,k k

k

y

y kM E e k
 −=       (3.3.1) 

If we defined stochastic process tZ  such that 

properties (2.4.4) and (2.4.5) are verified. We 

defined a martingale  such that its 

conditional Esscher transform with respect to 

 satisfies Radon-Nikodym condition (3.0.1). 

Since the Esscher transform is versatile for any 

probability distribution with unique existences 

of moment generating function, Yang and Sui 

(2004) defines the moment generating 

function of  with respect to  as; 

1

1
|

1

| ( )
( , )

| ( )k

k k k
k F

k k k

M F u
M u

M F




−

−

−

+
=  (3.3.2) 

Within the literature on option pricing if we let 

parameter 1u =  and k  be the time-counter 

parameter, , Yang and Sui (2004) and Badescu 

and Kulperger (2008) stated that the resulting 

equation  

* *

1 1| (1 ) exp | ( )k k k k k kM F rM F − −+ =  (3.3.3) 

is subjected to a unique solution *

k  given by  

 * 1
0.5t k k

k

r m h
h

 = − −   (3.3.4) 

 
1 The moment-generating function (MGF) of a log-normal distribution is given by:  

2 21

2( ) [ ]
t t

tX

XM t E e e
 +

= =  

 here   (the mean of the logarithm of X  and   (the standard deviation of the logarithm of X , t  is the parameter of 

the MGF. 

 

 

This equation guarantees that the risk-free 

rate and the average log returns of the stock 

under martingale  are identical and 

consistent. In this martingale, We defined from 

the beginning that the log-return process is 

given by equations (2.5.3) with the conditional 

variance defined in equation (2.5.4). Using 

equation (3.3.2), the algebraic computations 

show that the moment generating function of 

the returns is a log-normal distributions given 

by 

1

2 * 2 2

| ( , ) exp( ) 0.5
kk F k k k kM u m h u h u 
−

= + +       (3.3.5) 

On comparing with the definition of moment 

generating function, the mean equation of the 

returns were given by  

  *

1|k k k k kE y m h − = +             

(3.3.6) 

and conditional variance equation 

 1Var |k k ky h− =             (3.3.7) 

substituting equation (3.3.4) in both equations 

(3.3.6) and (3.3.7), the resulting expectation 

was found to be exactly the same with those 

of Heston and Nandi (2000). i.e.  

 1| 0.5k k kE y r h− = − and the conditional 

variance in equation (3.3.7) 

We have shown that the Conditional Esscher 

transform gives equivalent results of the log-

return formulas as Duan’s LRNVR. The task to 

choose which one is appropriate was finished 

in Badescu and Kulperger (2008) paper which 
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gave an strong rationale for choosing Esscher 

transform over Duan’s LRNVR, based on the 

fact that it is justified by a log-linear pricing 

kernel serves as a function on ky . 

3.4 Affine Multivariate GARCH model under 

historical measure  

The outstanding constraint to GARCH models 

is assumption for single dimension time series 

which is not the case with common markets. In 

order to obtain the fine structure of the multi 

dimension affine model, we need to build 

specific parameters for the conditional 

variance provided we have the modification 

distribution. Alexandru and Ortega formulated 

limitation conditional covariances’ joint 

cumulant generating function (cgf) in the 

invariant case. The distinct form of the Heston 

and Nandi (2000) risk neutral return process ky  

under the martingale  is assumed to be 

given by 

( ) , ~ (0,1)P P

k k k k ky r h h  = +  +   (3.4.1) 

The corresponding conditional variance (3.4.2) 

is given by 

( )
2

1 1 1( ) ( ) ( ) ( ) .P

k k k kh h h    − − −=  +  +  −   

As assumed earlier in equation (2.2.10), we 

shall deal with these equations when time step  

1 = . Using equation (2.2.14)), we substituted 

the above equations and the expressed 

expected value on a historical probability in 

joint cumulant function of k  and 2

k is given in 

equation (3.4.3) 1 . Assuming that the 

parameters controlling the conditional 

variance dynamic in equation (3.4.2), meet the 

standard criteria, it will be probably certain 

that the model is stable. To illustrate, 

Alexandru and Ortega proposed that  ,  , 

 
1 The expectational equation is given by 

( ) ( )2 2

( 1) ( 1)log exp | exp 2P

k k k k k kE y h r E h          + −
  + = + + + + + + −

   
 

and   need to be non-negative. Additionally, 

the persistence stability must satisfy 
2 1 +  . The leverage impact is quantified 

by the measure   as mention in Escobar et al. 

(2019), a positive value of which suggests a 

negative connection, as is often seen in 

equities markets, between the volatility 

degrees and asset performances. Using the 

factor that the standard normal in t  defined by  

2
2

log 1 2
2(1 2 )

t te  




+ = − − +
−

      (3.4.4) 

Then algebraic computations show that the 

equations of the log-return under historical 

probability satisfy equation (2.2.13) with the 

coefficient  

( 1) ( , ) 1 2k r log     − = + − −      (3.4.5) 

and the conditional variance coefficient given 

by  

2
2

( 1)

( 2 )
( , )

2(1 2 )
k

 
      


−

−
= + + +

−
    

(3.4.6) 

3.5 Affine Multivariate GARCH model under 

measure  

In this section, we object to understanding the 

normality parameters of the risk neutral 

measures. The risk neutral measurements are 

presented in this part, together with the 

condition relation equation for market prices 

of equity risks and variance in the payoff space. 

Using assumption (2.2.13),  we state that the 

proposition with respect to a martingale 

measure , the risk neutral joint cumulant 

generating function is given by equation 

(3.5.1) 
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( )
( 1) ( 1)( , )| ( 1, ) ( 1, ), ( , ) ( , )

k k ky h k k k k kh       
+ − − −= +   

here the coefficients are given by equation 

(3.5.2) and equation (3.5.3) respectively 

( 1, ) ( 1, ) 1 2 ( 1, ) 1 2( , ) ( , ) ( , )k k k k k k      − − −= + + −  

( 1, ) ( 1, ) 1 2 ( 1, ) 1 2( , ) ( , ) ( , )k k k k k k      − − −= + + −  

The evidence uses algebraic computations to 

demonstrate exactly the coefficients rely on 

the market price of risks subject to no-

arbitrage restrictions,  

( 1, ) 1 2 ( 1, ) 1 2(1 , ) ( , )k k k k r − −+ = +          (3.5.4) 

( 1, ) 1 2 ( 1, ) 1 2(1 , ) ( , )k k k k − −+ =           (3.5.5) 

3.5.2 Proposition. Similarly, if we may just set 

initial values in the payoff market space  

0 = , 1 = , ( 1, ) ( , )k k r  − = , ( 1, ) ( , ) 0k k  − =  

for equations (3.5.2) and (3.5.3), we obtain the 

no- arbitrage restrictions. For any market or 

payoff space for equation (2.3.1), two market 

risk-price combinations subject to equation 

(3.5.5) satisfy the following equation 

 1 20.5 2 ( )   = − − + +   (3.5.6) 

 3.5.2 Conjecture Suppose the asset return 

follow the affine GARCH dynamics under  

equation (3.4.1). The risk neutral dynamics 

under variance dependent on the pricing 

kernel in equation (2.3.1) subject to equation 

(3.5.1) and proposition (3.5.2), the log-return in 

the risk-neutral measure is normally 

distributed i.e. 

 * *~ 0.5 ,( )k k ky r h h−  

 

1 The coefficients are given by ( )* * * * * *

, , , ,

1
( , ) ( , ) ( , ) log 1 2 ( , )

2
l k l k l k l kr             = + + − −

( )
( )

( )

2
* * *

,* * * 2 *

, , * *

,

2 ( , )
( , ) ( ) ( , )

2 2 1 2 ( , )

l k

l k l k

l k

     
        

   

−
= − + + +

−
 

 

thus, the return risk neutral dynamics is given 

by      

* * * *0.5 , ~ (0,1)k k K k ky r h h  = − +    (3.5.7) 

( )
2

* * * * * * *

1 1 1k k k kh h h   − − −= + + −       (3.5.8) 

With  

 *

2 2(1 2 ) (1 2 ) 0.5    = − + − +  

The risk neutral dynamics are then given by  

*

21 2





=

−
, *

2

2(1 2 )





=

−
, 

*

2(1 2 )  = − ,   *

2(1 2 )  = −  

According to Alexandru and Ortega, one can 

utilize the conclusions in proposition (3.5.1) to 

describe the multi-step risk-neutral cumulant 

generating function of kY  and *

kh  provided the 

GARCH dynamics under  and  retain 

identical structure 

( )*
( 1) ( 1)

* * *

, , 1( , )|
, ( , ) ( , )

k k k
l k l l k ly h

Y h        
+ −

+= + +  

     (3.5.9) 

Here the coefficients 
*

, ( , )l k    and 
*

, ( , )l k    

satisfy the following recursions for all l k : 

See footnote1 for any arbitrary values   and 

 , with given endpoint restrictions 
*

, ( , ) 0l k   =  and 
*

, ( , )l k   = . We can use 

this to obtain the distribution of shocks under 

the equivalent martingale measure. We now 

apply the change of measure to MuGARCH 

model with *  and *  given in equations in 

equations 3.5 
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3.6 Vector parameters of Multivariate 

GARCH model 

As there are many forms of multivariate 

GARCH models, this paper aims to focus on 

the Dynamic Conditional Correlation of 

Multivariate GARCH. Perhaps, we need to first 

construct the Constant Conditional Correlation 

multivariate model, consider the normalized 

residuals, ~ (0, )n n   where  is an identity 

matrix and n  number of observations made, 

retrieved from the n  dimension models. 1 If 

1n =  we retrieve equation (2.2.10), then for 

bivariate model 2n =  thus 
1,

2,

k

k






 
=  
 

 and the 

covariance matrix can be given by 
1,

2,

k

k

h

h

 
 
 

 

We can separate the conditional variances 

into the conditional standard deviations and 

constant using the technique proposed by 

Engle (2002) and Bollerslev (1990). While 

modeling the vector form, the conditional 

variance is considered as product of time 

invariant probabilities i  and the square 

difference between i, j observations of k  as 

time series. By natural definition of 

correlation, ij  in terms conditional 

covariance, kh  and variance is given 

,

,

, ,

ii k

ij k

ii k jj k

h


 
=  here ,1 1ij k−    and k  is the 

already iteration of time series. In the 

literature of Silvennoinen and Terasvirta 

(2008) and Bollerslev (1990) assumed 

constant correlations between the and the 

conditional covariance matrix shall be given 

by , , ,( )ij k ii k jj k ijh   =  if we define the 

variance matrix conditioned to field space 2 as 

 
1 Most  of  the  work  in  this  section  is  got  from  Engle  (2002),Silvennoinen  and  Terasvirta  (2008),Bollerslev 

(1990),Bollerslev (1986) 

 
2 We may define the 1k −  as the field space of information generated up to time k t=  

2

, ,ii k i k i =   where   is time independent 

probability function and   is difference from 

the mean returns and the actual return from 

all observations, i . We can now retrieve the 

conditional covariance matrix with constant 

correlations as 

 2 2

, , ,( ) ( )ii k i k i i i kh   =  diag diag  

  where the ,ii k  is positive definite matrix of 

2 2 2

, 2, ,( , , , )n k k n kdiag    ,  i  should also a 

positive definite matrix which propositions are 

very easy to take and verify in order to 

maintain the positive entries of the covariance 

matrix. The dynamic conditional correlation 

secures the assumption of time invariant is 

violated by allowing the correlation to vary on 

time for every observation i  

 
2 2

, , ,( ) ( )ii k i k i k i i kh   =  diag diag  (3.6.1) 

The time dependent correlation matrix is 

positive definite given by 

1 1

2 22 2
, ,( ) ( )( ) ( )k i k k i k 

− −

 = diag diag            

(3.6.2) 

where k i k i =    and k  are the positive 

definite correlation and covariance matrix 

respectively. Observe that this does not take 

into any consideration of the martingale 

measure  or  but rather it is a generalized 

state.  

3.7 Vector Parameters in Probability  

We begin with a modification of returns 

behavior to determine our HN-MuGARCH 

algorithm with discrete time-varying 
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restriction. Specifically, Equation (2.2.8) can be 

represented in a matrix from as  

, , , , ,diag({ }) diag( ) ,i k ii ii k ii k ii k ii ky r h h Z= + +  

     (3.7.1) 

Where 1,2,....,i n=  and ,ii k i i =   

,ii k i ir r=  . The return equation is therefore 

the matrix vector invariant affine GARCH 

models with conditional variances ,i kh . For 

each time-point requires an update to kh , after 

which the coefficient matrix must be rebuilt 

using equation (3.6.2) and 
2

,( )i kdiag , which 

contains the diagonal elements of k . With 

this approach Bollerslev (1990) and Engle 

(2002)  proposed that the covariance matrix, 

kh  can then be rebuilt using equation (2.2.7) In 

order to guarantee that kh  is positive definite, 

Escobar et al. (2019) and Silvennoinen and 

Terasvirta (2008) proposed further the format 

of kh  using a GARCH(1,1)-like structure and 

enforcement stationary condition 1 2 1 +  .  

The conditional variance process in the 

historical probability setting is thus given by 

equation (3.7.2) 

1, 1 2 1 1, 1 1, 1 2 1, 1(1 ) ( ) , ~ (0, )k k k k k k kh h Z Z h Z− − −=  − − +  +    

which may preciously be simplified by 

substituting scalars for the matrix structures to 

obtain fewer open parameters as equation 

(3.7.3) 

1, 1 1, 1 1, 1 1, 2 1, 1 1,( ) ( ), ~ (0, )k k k k k k k k kh h Z Z h h h Z− − −= +  − +  −   

where ,i kh  is the unconditional covariance 

matrix of the multivariate standardized 

 
1 A discounted martingale for stocks may be obtained by applying an analogous change of measure of the type 

*

k k k kd d g h dt = − , provided that 
1 11

( )
2

A AB A A D G− −+ = , where G is a diagonal array containing elements 

kg  

residuals ,i kZ , 1 2, +    are parameters 

constants in the equation. Note that the 

observations on the linear combination of the 

equations shows there is error corrections for 

conditional correlations. 

3.8 Vector Parameters in Risk Neutral 

martingale . 

In the martingale , consider the equations 

(3.5.7) and (3.5.8) such ,i k  in equation (3.4.2) 

can be written as 

* * *

, , , , ,

,

1
,( )i k i k i k i k i k

i k

h h
h

 = +  where 

, , 0.5i k i k i i  = − −  and 
*

, ~ (0, )i k  which 

Escobar et al. (2019) proposed that in vector 

form * * * *

k k k kh b h = + . Substituting, we 

obtain the risk-neutral process given by 

* * * *

, , ,0.5 , ~ (0,1)ii k ii ii k ii k k ky r h h  = − +  here iir  

is matrix for the risk-free rates and the 

conditional variance matrix is given by 

equation (3.5.8) with the risk-neutral dynamics. 

Escobar et al. (2019) stated that the return risk-

neutral equation can therefore be represented 

in matrix vector form as
* * *(1 0.5 ) ,k k k ky r A A h A h = + −   +    

It makes it obvious that the risk-free rate of 

return and predicted asset returns is 

comparable1.  

4 Data 

In this section, we shall look at the empirical 

overview of the models, format of the data set 

used and its characteristics, simulations 

formats of the multivariate model. 

4.1 Data Description 
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 The study uses high-frequency trading 

datasets from within a single trading day for 

options on DAX and SPX data of S&P 500 

index downloaded from yahoo finance plat 

form using the TensorFlow. These datasets are 

credited with lots of money thus being 

appropriate for the training and testing the 

model. Ensuring the smart study, 

Christoffersen et al. (2013) explained why S&P 

500 index do not have complications to value 

of options, Heston and Nandi (2000) stated 

that because of the wildcard’s characteristics 

option under S&P index are simpler compared 

to S&P 100 option. The examination date of 

each index was chosen from 6/2023 to 9/2024 

right after the impact of Covid-19. The 

evaluation in pre-processing of  

DAX index between 6/2023 to 9/2024 was left 

out to the consideration of the reader. The SPX 

data index was found to have its components 

selected to pick companies across various 

industry to present across the US economy. 

The various pre-process were done and the 

statistical summary of the SPX data index was 

obtained as shown in the table (4.1) below. 

Table 4.1: Table for statistical summary 

 

The empirical analysis includes previous S&P 

500 data sets with an average yield of 4556 

and lowest and maximum stock price values of 

4115 and 5321, respectively. After examining 

the data’s structure, we processed the 

dynamics of S&P 500 influence on DAX. As 

Bakshi et al. (1998) stated that the impact due 

to changes in data point’s closing price may 

have on the corrected final prices of another 

asset within a portfolio are referred to as the 

”spillover effects of assets in a portfolio.” 

Because it makes the links and inter 

dependencies between the numerous 

variables in the markets clear, this may affect 

volatility consistencies thus a fundamental in 

data pre-processing. The spillover effects of 

two data sets were examined and represented 

in the table (4.2) 

Table 4.2: Table for spillover Effects of DAXI 

and SPX 

 

The question to ask is this enough information 

to justify the variations of spillover effects. To 

be gain broad understanding in the 

examination of the corporations within the 

data to be used, we need a plot of the volatility 

and returns in the target column of volume 

and Adj.close respectively. 

Figure 4.1: Figure shows how stock prices of 

S&P 500 data used vary per day and average 

log- returns. 

 

 Min. 1st Qu. Median 

Adj. Close 4115 4388 4556 

Volume 1.64e+9 3.617e+9 3.843e+9 

 Max. 3rd Qu. Mean 

Adj. Close 5321 5013 4674 

Volume 8.219e+

9 

4.096e+9 3.924e+9 

Index DAX 

Spillovers 

S&P 500 

Spillovers 

0 NaN NaN 

1 -13.979980 -47.049805 

2 -43.839844 -30.339844 

3 22.750000 36.039551 

4 0.450195 54.170410 
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The graphs shows that stock return have stock 

market prices which experience the clustering 

volatility. The volume graph shows the 

variation of average returns while graph of 

Adj.close shows how the variations of prices. 

Since the volatility is seen to evolve 

independently, this allows option pricing 

across multiple underlying assets to be 

analyzed. 

4.2 Simulation analysis 

In this section, our main goal is to build 

frameworks that can correctly forecast stock 

price growth without neglecting time-varying 

volatility into account. According to 

Christoffersen et al. (2013), the GARCH(1,1) 

model has been shown to be a sound empirical 

model with regard to volatility analysis. For 

illustration, we use the equation (3.7.3) for 

MuGARCH(1,1) model and equation (3.2.1) in 

this section. We simulate both models using 

the Monte Carlo. 

4.2.1 Simulation in Risk- Neutral 

GARCH(1,1) Model. Given all the information 

in a k filed for reproducing stock price, we can 

define the one-step variance function, 

consisting the conditional variance dynamics 

of the stock price process in equation (3.2.1). 

Model parameters ω, β1, α1  and a risk 

premium λ were assumed for 50 number of 

simulations in three intervals as shown in table 

(4.3). 

Table 4.3: Table showing assumed parameter 

values in Risk Neutral GARCH model 

 

By evaluating the standard deviations allows 

us to capture the instantaneous influence of 

volatile markets on turbulence. We also made 

daily simulations of yearly interest rate and 

volatility, the annualization was done based on 

256 days. 

4.2.2 Simulations in MuGARCH model.  

As in Duan (1995), this section we assumed 

that the risk-free interest rate r is zero 

throughout. In addition, the assumption of 

forecasts on past volatility and returns as 

present/ constant volatility was violated in 

stochastic market models where volatility is 

random process. Monte Carlo simulations in 

conjunction with its variance reduction 

methods as indicated in the literature of 

Silvennoinen and Terasvirta (2008) and 

Bollerslev (1990) who proposed a format to 

parameterize the multivariate model with 

conditional variances, and covariance but 

constant and dynamical correlations. The 

Dynamical conditional covariance model was 

chosen because it assigns fewer parameters to 

stand in for the volatility and formulation of 

returns. Firmly putting into account, the 

estimate and dynamic correlations with less 

computational complexity, the MuGARCH 

model is computationally easy relative to other 

GARCH models. For this case, we explained the 

algorithm of simulation under this model as 

earlier said in section (3.7). In continuation, we 

need to develop an update for hk in each time-

step variation, we consider rebuilding the 

dynamic correlation matrix in equation (3.7.3). 

The unrestricted parameters     under variance  

kh  and kZ  ca n be obtained from the equation 

below.  

, , 1 , 1

1 1

1
2

T n

i k i k i k

k i

h Z Z n
T

− −

= =

=  =          (4.2.1) 

  for bivariate models  

Parameters 1st 

Interval 

2nd 

Interval 

3rd 

Interval 

ω 0 5e-5 0.4 

α 8.887e-7 1.23e-6 9.1e-8 

β 0.751 0.651 0.800 

λ 0.574 0.685 0.712 
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1

2 2
,( )( )k i k kZ y

−

= diag                      (4.2.2) 

Keeping in mind that we are dealing with 

bivariate we set i = 2 observations thought the 

entire time line stepping. If we assume the 

random parameters from (2.2.6) and (3.7.3) as 

show in the table (4.4) below. 

Table 4.4: Table showing the assumed 

parameters in MuGARCH 

 

Considering all the variable parameters, 

MuGARCH model is imported to have different 

paths of simulations through the described 

algorithm. Silvennoinen and Terasvirta (2008) 

and Laurent (2021) proposed the importance 

of using a iterative technique of updating the 

covariance matrix instead of predicting the 

covariance matrix up to a time iteration, k and 

formulating the normalized path vector 

products with the covariance matrix. In each 

iteration, there is no considerable impact 

between the covariance vector values of the 

current and incoming days. For both 

multivariate and univariate, first step on the 

algorithm is to predetermine the parameters in 

table (4.4). As indicated before the estimations 

strongly depend on the normalized residuals 

Zk in equation (4.2.2). The choice for the 

distribution depends on the data but in this 

paper, we consider the multivariate normal 

distribution for the residuals. Considering the 

 

1 The joint distribution is then given 
/2

1

1 1
exp

(2 ) 2

T
T

k kn
k

Z Z
=

 
− 
 

 since [ ] 0kz =  and [ ]T

k kz z I= . 

2 There is indeterminably log-likelihood function, thus the model can be allowed to take on the second formulation. This paper 

focuses on this formulation. 

( ) ( )( ) ( )( )
1 11

2 2 1 22 22

1

1
ln(2 ) ln | | ln(| |)

2

T
T

k t k k k k k

k

n y y   
− −−

−

=

  
− + +  +    

  
 diag diag diag  

normalized error Zk with time iteration k = 1, 2, 

3, ...., t.  1Here t = 1, ..., T is the time period used 

to estimate the model. Laurent (2021) used the 

linear transformation rule of variables and the 

algorithmic steps described above to give the 

likelihood function ln ( )L   for 
1

2 2
,( )( )k i k ky Z= diag  as 2   

5 Results and Analysis 

In this section we present the results and their 

discussions obtained from the simulations 

made in the Risk-Neutral model, 

MuGARCH(1,1) model. 

5.1  Results and Discussions from 

Simulations under Risk Neutral model 

The 1000 simulations were carried out but two 

are presented in the figures (5.1a) and (5.1b) 

for time runs. Despite the fact that all the 

variation in returns show both high and low 

values implies that predictions can be made by 

the model to fit any data.  

The realizations of the innovation series 

generate different beginning points even 

when given the similar starting variance. This 

may be due to the random selected 

distribution of ξ from Gaussian with mean 

value 0 and variance, 1. 

Figure 5.1: Figures showing Comparison of 

Simulated Returns and Volatility 

Parameter ω1, ω2 α1, α2 β1, 

β2 

Γ1, Γ2 

Value 0.02, 

0.025 

0.08, 

0.045 

0.89, 

0.94 

0.04, 

0.88 
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In figure (5.1b), however the conditional 

variance is seen to decrease from 9e−5 to 

approximate value of 1.6e−5. Both simulations 

take a decreasing trend however both paths 

tend to maintain a variance of 1.6e−5 beyond 

time iterations of > 10. The decreasing 

conditional variance provides a good sense in 

which the parameters values were assumed, 

the simulations decrease the trend 

asymptotically on 1e−5 due to the difference 

positive correlation and may be the positive 

value of the risk premium, +λ.  

Having looked at the log-returns in the risk 

neutral measures we can now find the 

randomness in the simulation market of 

pricing options. The Risk neutral GARCH(1,1) 

don’t account for structure reliance and 

therefore it is absolutely pure from normalized 

errors, this implies that as the simulations 

increase the unconditional variance →  ∞ 

which is violated by the parameter assumed. 

However from equation (4.2.2), the i.i.d 

residuals follows a univariate standard normal 

distribution thus having absolutely no 

correlation format. Lets focus on the multiple 

simulations yielding returns and volatility of 

the interval parameters assumed before in 

table (4.3). The volatility trends of all the 

interval cases shown in figure (5.2) vary almost 

the same in the simulations ranging from 400 

<, and < 800 and exhibit clustering for all the 

simulations. 

Figure 5.2: Interval’s volatility and returns 

evaluation 

 

We simulated the model depending on the 

random vectors errors in table (5.1). The values 

of the standard deviations and payoff for 

European call from the simulated parameters 

was obtained and recorded.  

Keeping the random vector errors constant, we 

used the parameters set by Duan (2000) to 

obtain almost the same approximate values as 

presented in table (5.2a) and table (5.2b) 

The initialization of current stock price S(0) = 

51, standard deviation SD(1) = 0.2, the daily 

risk-free rate and standard deviations were 

calculated per annum. Although the dynamics 

of this risk neutral model are not realistic with 

suitable choice of parameters, the model 

approximates roughly the same values for the 

standard Monte Carlo simulations in Duan 

(2000). 
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Table 5.1: Table showing Terminal Stock 

prices 

 

In the both table (5.2a) and table (5.2b), the 

values of the standard deviation obtained by 

the risk neutral model. The parameter values 

for the two cases of intervals are presented 

and found to be the same for this model. 

More considerations can be taken to predict 

returns in financial data index and price 

derivatives using the model. We can use the 

obtained model to price options, the 

valuation of prices is represented in the table 

(5.3).  

Table 5.2a: Table showing comparisons of 

simulations 

 

Table 5.2b: Table showing comparisons of 

simulations 

 

By setting to first interval of parameters in 

table (4.4),the valuation for each time to 

maturity, the effect on options can be attached 

to the valuation of strike prices. This is because 

prices of higher strike prices have Option 

prices ranging from [0.3266, 10.4983] 

respective from lowest to highest maturity 

times. The differences in strike prices show 

how intuitively option prices are to changes in 

the prices of the underlying asset. The longer 

time value component led to higher option 

prices; this is due to the certainties on in the 

money market price situations. The option 

prices for the second and third interval set of 

parameters are given and represented in the 

tables (5.4) and (5.5). In all the obtained results 

for the three different intervals of parameters, 

the price of a European call options exhibit 

similar trends that is decrease as the strike 

prices increase. This is a widely recognized 

characteristic of option prices that is 

irrespective of the model used. It is important 

for an investor to know such variations for 

instance when the strike price exceed the 

market price, the call options are said to be in 

the market with an intrinsic value while when 

the strike exceeds the market value the option 

derivatives are said to be out the money with 

no intrinsic value. 

Error Simulations 

Error 1 Error 2 Standard 

Deviation 

Stock 

Prices 

0.7809 2.3587 90.35161 46.95111 

2.0049 1.6775 90.13422 49.10413 

2.1353 1.4168 90.39232 45.07714 

1.9637 -0.4495 90.56557 47.84593 

1.3512 0.2180 90.15646 47.84593 

0.7809 2.3587 90.35161 46.95111 

2.0049 1.6775 90.13422 49.10413 

2.1353 1.4168 90.39232 45.07714 

1.6646 -0.4495 90.56557 47.84593 

1.3512 0.2180 90.15646 47.84593 

S(0) SD(1) S(1) Call 1 S(1) 

51 0.200 50.572 1.012 50.57189 

51 0.200 50.713 1.022 50.71296 

51 0.200 51.224 1.271 51.22406 

51 0.200 51.238 0.921 51.23806 

51 0.200 51.294 1.208 51.29403 

51 0.200 50.448 1.881 50.44811 

51 0.200 51.202 1.243 51.20197 

51 0.200 49.925 0.000 49.92468 

51 0.200 50.875 0.151 50.87472 

51 0.200 51.169 1.371 51.16950 

SD(2) S(2) SD(2) Call 2 S(2) 

0.215 51.012 0.342226 0.571734 50.561 

0.207 51.022 0.294625 0.712768 50.702 

0.190 51.271 0.123271 1.223723 51.274 

0.190 50.921 0.118602 1.237717 51.248 

0.190 51.208 0.099945 1.293677 51.294 

0.222 51.881 0.384103 0.447984 50.448 

0.191 51.243 0.130641 1.201641 51.201 

0.261 48.918 0.562326 0.000000 49.964 

0.200 50.151 0.240208 0.874477 50.844 

0.191 51.371 0.141481 1.169178 51.199 
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Table 5.3: Table showing Option Prices for Different Strike Prices and Maturities 

TIME TO MATURITY 

Strike Price 30 60 90 120 150 180 

90 20.6401 21.4731 22.714 24.5966 27.1989 30.6185 

92.2222 16.4001 17.4437 19.0335 21.2498 24.0689 27.6532 

94.4444 12.3055 13.6293 15.6227 18.1522 21.1433 24.8667 

96.6667 8.4158 10.1528 12.5477 15.3199 18.4399 22.2644 

98.8889 4.8828 7.1861 9.8502 12.7686 15.9604 19.8476 

101.1111 2.581 4.8828 7.5629 10.5053 13.7125 17.6136 

103.3333 1.6263 3.2735 5.6784 8.5263 11.6921 15.5652 

105.5556 1.0045 2.2372 4.1823 6.8288 9.8921 13.7018 

107.7778 0.5883 1.5605 3.0372 5.3996 8.3076 12.0156 

110 0.3266 1.0862 2.1862 4.2105 6.9209 10.4983 

 

Table 5.4: Table showing Option Prices for Different Strike Prices and Maturities for second interval of 

parameters. 

TIME TO MATURITY 

Strike Price 30 60 90 120 150 180 

90 20.6664 21.6331 22.7626 24.0592 25.5664 27.272 

92.2222 16.4264 17.5735 18.8543 20.2976 21.9467 23.7755 

94.4444 12.3318 13.6706 15.1345 16.7434 18.5337 20.4754 

96.6667 8.4407 9.9963 11.6852 13.4646 15.3707 17.4019 

98.8889 4.8436 6.7318 8.6263 10.5281 12.4952 14.5837 

101.1111 2.509 4.2804 6.1151 8.0035 9.9537 12.0424 

103.3333 1.6263 2.9398 4.3143 5.9676 7.7809 9.7976 

 

Table 5.5: Table showing Option Prices for Different Strike Prices and Maturities in third interval of parameters 

TIME TO MATURITY 

Strike Price 30 60 90 120 150 180 

90 10.6809 11.5608 12.4332 13.2623 14.0479 14.7949 

92.2222 8.6496 9.6948 10.6634 11.5562 12.3879 13.1704 

94.4444 6.7638 7.9729 9.0251 9.9704 10.8391 11.6495 

96.6667 6.7638 7.9729 9.0251 9.9704 10.8391 11.6495 

98.8889 5.0815 6.4213 7.5338 8.5155 9.4091 10.238 

101.1111 3.6515 5.0595 6.2004 7.1983 8.1028 8.9397 

103.3333 2.5009 3.8967 5.0298 6.022 6.9223 7.7561 
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5.3 Results and Discussions of 

MuGARCH (1,1) model 

The pre-processing of the datasets DAXI 

and SPX index were followed from 

section (4.1), for which the Dynamic 

Conditional Covariance MuGARCH 

model produces specified trends of the 

datasets. Notably recalling that the 

model specifications are for normalized 

distributions, proposition can be taken 

for student t-distributions which could 

nicely work as well in the same 

trajectories of the simulations. For these 

datasets, the examinations were taken on 

correlations using the matrix vector 

equation (3.7.3) and the comparison 

graph was plotted as shown in figure (5.3) 

below. 

Figure (5.3a) A graph showing Log-

returns 

 

For each time-series, the characteristic 

volatility clusters are apparent. The link 

connecting the two indicators seems to 

have decreased after the epidemic 

started. After then, correlation ap- pears 

to be cyclical. Overall, the trend 

resembles an Ornstein-Uhlenbeck 

processes discretized. Our structure’s 

error correction approach in equation 

(3.7.3) should be able to account for this 

behavior. Now the focus should be on 

whether the model can be used to 

forecast correlations see figure (5.3b) , 

the graph show outcomes of equation 

(3.6.1), hii,k is conditional correlation 

represented by the red curve, cyan 

colored curve represents the conditional 

correlations iterated at some time, k and 

green line represents the unconditional 

correlations precisely better.  

Figure (5.3b): A graph of Conditional 

Correlations 

 

Observations show that the conditional 

correlations are often greater than the 

unconditional correlations, there are two 

sharp syncline correlations during the 

month of August 2023 and late April 

2024 which affected the two-market 

index. This doesn’t necessary mean that 
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the DAXI index has an effect on to SPX 

and vice versa but further analysis can be 

taken for proper portfolio management. 

The conditional correlations show how 

one may hedge a DAXI option on SPX 

option index. For empirical asymmetric 

methods, it might be interesting to be 

able to predict correlations with 

reliability.  

Correlations could be an intriguing 

substitute for price changes, which are 

the usual method used in such tactics. 

Thus far, our focus has been on 

comprehending the discretized matrix 

form of MuGARCH’ s conditional 

correlation predictions (see 5.3b). By 

doing so, we hope to be able to apply the 

model for option pricing by gaining a 

grasp of the correlations’ simulated 

running movements. The predicted 

correlations of the model move along 

with the running correlations see figure 

(5.3d) below up to the time to maturity 

thus we have created a reflection set in 

MuGARCH that will allow us compare the 

conditional variances and correlations 

notably for special and dynamical 

assumptions on the parameter models  

Figure (5.3d): A graph of Running 

Correlation 

 

Figure (5.3d): Predicated and Running 

Correlation 

 

The prediction line in figure (5.3d) fits for 

fewer estimates of the running 

correlations for time variants. Further 

analysis, training and modifications may 

be done for proper fitting the model.  

6. Conclusions and Perspectives  

For the univariate format, the initial 

parameters were needed for predictions in 

the option markets and properly fitted to 

exhibit the relationship equation of decrease 

in strike price increases in option prices. The 

datasets were used from the 1st day of June 

2023 and the examinations were done on 

SPX data index and the DAXI was assumed to 

have the same trend with all the volatility 

clustering. Gaussian distributions of the 

Dynamic condition correlations version of 

multivariate GARCH were considerations and 

it’s modelling procedures are well stated. 

Although the methodology in pricing 

derivatives has not been documented, the 
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paper shows how the running conditional 

correlations is determined with the fit of the 

model. The aim of this paper was to model 

and simulate paths in discrete-time 

frameworks of GARCH, focusing on 

univariate and multivariate the assumptions 

on parameters in both models and standard 

datasets for the models were based on the 

considerations of the author. The paper also 

shows the precise derivations of univariate 

and multivariate GARCH models in both 

martingale states. In this, however, we focus 

on the stochastic discount factor, locally risk-

neutral valuation, and the conditional 

Esscher transforms as powerful tools for 

deriving these models. The normality 

assumptions were presented as an absolute 

necessity for all the residual information in 

the market. The moment-generating 

functions and cumulant-generating 

functions for the respective univariate and 

multivariate GARCH were presented and 

discussed to an absolute unit of scale. The 

time variant conditional correlation and 

covariance matrix formulas were presented 

in their discretized forms, and it was found 

that there are error corrections in the 

formula. While it has been an objective to 

derive these formulas, computational 

simulations were also presented, and models 

prescribed the trend of clustering. Option 

assessment research remains subject to 

computational limitations because of the size 

of the data sets and the complexity of the 

processes required by the data’s 

construction, even when advances in 

computing power constitute the evaluation 

of data- rich and complex optimization issues 

become more feasible with graphing. The 

major discovery in this paper is that the 

MuGARCH (1,1) was a good estimator to a 

time variate conditional correlation.  

Fewer models were considered to simply 

reduce the content of the paper for the 

interest of time. Therefore, the need to 

address more models will provide much 

more insights into investor choices in index 

comparisons. In addition, this paper gives 

parameter and simulation insights but one 

may practice improving GARCH equations 

for up-coming problems. 
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