
Aamina Atlaswala, 2024, 12:5

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2024 Aamina Atlaswala. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Emoji-Enhanced Sarcasm Detection: A Comparitive

Study of Logistic Regression and LSTM Models
Aamina Atlaswala, Dr. Rakhi Gupta, Nashrah Gowalker

Department of Information Technology.

KC College Mumbai, India

I. INTRODUCTION

The magnitude of data generated through social

media today is colossal. They are good for data

analysis since they are very personal [1]. Multiple

social media platforms use this data to provide

personalized feed and reviews. This personalize

feed and reviews might not be 100% correct. This is

because the sarcasm is not filtered. Sarcasm in text

is an obstruction for less accuracy.

To solve it, in this research Logistic Regression

Model and Long-Short-Term Memory Models are

utilized to detect sarcasm along with emoji. Emojis

play a nuanced role in digital communication and

have a potential to convey sarcastic intent as they

often offer non-explicit and sometimes ambiguous

cues. This ambiguity has a potential to fuel hate-

speech, trolling, or cyber-bullying under the guise

of sarcasm[2]. The emojis are preprocessed before

training the models and making the models do

detection i.e. emoji are converted in to text.

Machine learning (ML) is a branch of artificial

intelligence (AI) and computer science that focuses

on the using data and algorithms to enable AI to

imitate the way that humans learn, gradually

improving its accuracy.

Logistic regression is a supervised machine learning

algorithm used for classification tasks where the

goal is to predict the probability that an instance

belongs to a given class or not. Logistic regression

is a statistical algorithm which analyze the

relationship between two data factors. Long Short-

Term Memory is an improved version of recurrent

neural network designed by Hochreiter & Schmid

Huber. LSTM is well-suited for sequence prediction

tasks and excels in capturing long-term

dependencies. Deep learning is a subset of machine

learning that uses multi-layered neural networks,

called deep neural networks, to simulate the

complex decision-making power of the human

brain. Therefore, in this paper, we study the novel

problem of exploiting emojis for sarcasm detection

on social media[5].

Abstract- Sarcasm is a form of language defined using words or phrases that express the opposite of their actual

meaning, often with a purpose of mocking or criticizing something or someone. Sarcasm detection is crucial for

mining, sentiment analysis, detecting cyberbullies, online trolls, and other similar activities. Detecting Sarcasm is

a part of Sentimental Analysis. This research focuses on detecting sarcasm in text with emojis using the Logistic

Regression Model, a traditional machine learning approach, and the Long Short- Term Memory (LSTM) Model a

deep learning technique and provides a comparative study of models from the two branches of Artificial

Intelligence. The emojis in the dataset were converted to their text descriptions to infer their actual usage in the

text. And then the models were trained on the preprocessed data.

Keywords- Sarcasm, Emoji Processing, Long Short-Term Memory (LSTM) Model, Logistic Regression Model,

Machine Learning, Deep Learning, Sentiment Analysis, Comparative Study

 Aamina Atlaswala. International Journal of Science, Engineering and Technology,

 2024, 12:5

2

II. METHODOLOGY

In this section, we outline our proposed

methodology, which focuses on utilizing emoji data

to address the challenge of multimodal sarcasm

detection within a multitask framework[3].

The methodology followed in doing this research

has the following steps.

1. Data Collection

First step was to collect data. For which a dataset of

tweets from GitHub is used as a secondary data.

This was a labelled dataset. That was downloaded

from GitHub in csv file format.

2. Data Pre-Processing

Second step is data pre-processing in which data is

cleaned and prepared for the models to be trained

on. Data preprocessing is a foundational step in

readying datasets for various data-driven tasks,

including both machine learning and deep learning.

This crucial phase involves a series of operations

designed to clean, structure, and refine raw data,

ensuring its suitability for subsequent modelling

stages. Whether applying traditional machine

learning algorithms or deep neural networks,

preprocessing tasks remain fundamental. Common

operations include handling missing values,

removing duplicates, scaling numerical features,

and encoding categorical variables. For text data,

tasks like tokenization, lowercasing, and removing

stop words are commonplace. The effectiveness of

machine learning and deep learning models is

intricately tied to the quality of the pre-processed

data, emphasizing the critical role of preprocessing

in extracting meaningful patterns and insights from

diverse datasets.

Following are the preprocessing steps applied to

refine and prepare the dataset for subsequent

modelling stages:

Removing words "sarcasm", "sarcastic",

"sarcastically": Utilizes basic string manipulation in

Python without the need for external libraries. This

step ensures the explicit removal of terms that

might bias sentiment analysis.

Removing '#' tags only keeping the word ahead of

it: Achieved through Python's string manipulation.

The '#' symbol and subsequent characters are

discarded, retaining only the relevant word. No

external libraries are required.

Removing '@' tags with the name ahead of '@':

Employing Python string operations, this step

eliminates Twitter handles (@username) from the

tweet, maintaining the remaining text. External

libraries are unnecessary for this task.

Replacing emojis with their descriptions: Python's

string handling, possibly aided by the 'emoji' library,

transforms emojis into text descriptions for

standardization. Ensures consistent representation

of emoticons.

Handling numbers: Standard Python string

manipulation is applied, removing or normalizing

numerical characters in the tweet. No external

libraries are needed for this numerical processing.

Handling non-English alphabets: Leverages Python

string methods to either remove or replace non-

English characters. External libraries are not

employed for this task.

Handling symbols: Python's string manipulation

addresses symbols, including punctuation and

special characters, ensuring a clean text for analysis.

No external libraries are required.

Handling unnecessary spaces: Basic Python string

operations are used to clean up unnecessary

whitespace, enhancing tweet readability and

consistency without relying on external libraries.

Counting repeated letters in each word to create a

'repetition' column: Python's string manipulation

counts repeated letters within words. This step

generates a 'repetition' feature. No external libraries

are necessary.

Counting capital letters in each word to create a

'capital' column: Utilizes Python's string methods to

count capital letters within words, creating a

 Aamina Atlaswala. International Journal of Science, Engineering and Technology,

 2024, 12:5

3

'capital' feature without reliance on external

libraries.

Calculating sentiment scores for each word using

SentiWordNet: Involves leveraging the 'nltk' library

and the SentiWordNet lexical resource in Python.

Assigns sentiment scores to words for a nuanced

understanding of sentiment. Loading and Parsing:

The initial step involves loading the SentiWordNet

file into the NLP environment. Subsequently, the

content is parsed meticulously to extract pertinent

information crucial for sentiment analysis. Mapping

to Text

Data: Every entry in the SentiWordNet file

corresponds to a synset (POS,ID) and is

accompanied by associated positivity (PosScore),

negativity (NegScore), and objectivity (ObjScore)

scores. Simultaneously, the text data, which may

consist of reviews or tweets, undergoes

tokenization into words or phrases.

Mapping Words to Synsets: During the

preprocessing phase, words or phrases extracted

from the text data are meticulously mapped to their

corresponding synsets in the SentiWordNet file.

This mapping entails matching words to their

WordNet IDs and associating them with the

appropriate part of speech (POS).

Calculating Sentiment Scores: Utilizing the

positivity, negativity, and objectivity scores from

SentiWordNet, sentiment scores are systematically

computed for each word or phrase in the text.

These sentiment scores play a pivotal role in

comprehending the overall sentiment of the text,

where positive and negative scores signify the

intensity of sentiment.

Aggregation and Normalization: Individual

sentiment scores attributed to words or phrases are

often aggregated to derive an encompassing

sentiment score for a sentence or document.

Moreover, these scores may undergo normalization

to ensure consistency and comparability across

diverse texts.

Threshold Determination: A critical aspect

involves setting a threshold based on the sentiment

analysis results. This threshold aids in classifying the

overall sentiment of the text, categorizing it as

positive, negative, or neutral.

Integration into NLP Models: The processed

sentiment scores seamlessly integrate into broader

NLP models. This integration proves beneficial for

various tasks, including sentiment classification,

opinion mining, and emotion analysis.

SentiWordNet: SentiWordNet employs a

comprehensive scoring system to assign sentiment

scores to words based on their positivity, negativity,

and neutrality. These scores span a range from -1

(most negative) to 1 (most positive), with 0

indicating neutrality. The breakdown of scores is as

follows:

Positivity Score (PosScore)

 Represents the positive sentiment intensity of a

word.

 Range: 0 to 1 (higher values indicate greater

positivity).

Negativity Score (NegScore)

 Represents the negative sentiment intensity of

a word.

 Range: 0 to 1 (higher values indicate greater

negativity).

Objectivity Score (ObjScore)

 Represents the neutrality or objectivity of a

word.

 Range: 0 to 1 (higher values indicate greater

neutrality).

These nuanced sentiment scores facilitate a detailed

understanding of a word's sentiment, contributing

to more precise sentiment analysis in natural

language processing applications.

Identifying positive and negative words based on

sentiment scores: Building upon the 'nltk' library,

this step determines the sentiment of words in the

tweet, categorizing them as positive or negative

based on their sentiment scores.

 Aamina Atlaswala. International Journal of Science, Engineering and Technology,

 2024, 12:5

4

Tokenizing the tweet: Utilizes the 'nltk' library in

Python to tokenize the tweet, breaking it into

individual words or tokens for subsequent analysis.

3. Model Training

There is significant future scope for this research. If

the limitations outlined in this paper, particularly

time and economic constraints, can be addressed,

utilizing the paid Twitter API to access real-time

tweet data would be a highly beneficial next step.

Real-time data would allow for more accurate and

up-to-date analysis of sarcasm in tweets, enhancing

the relevance and applicability of the model. This

would improve the system’s responsiveness to

current trends in language, emoji usage, and the

evolving nature of sarcasm on social media.

Another promising direction for future research is

the incorporation of context-based datasets.

Sarcasm often relies heavily on the context in which

it is expressed, and building models that are aware

of the broader conversational or situational context

could significantly improve sarcasm detection.

Developing datasets that provide contextual

information, rather than analyzing isolated tweets

or short text segments, would help models to better

interpret sarcasm.

Furthermore, expanding the scope to include visual

memes and videos offers another potential area for

future exploration. Sarcasm is not limited to textual

expression; it often appears in multimedia formats.

By utilizing datasets made up of images, videos,

and memes, and integrating context-aware models,

researchers could create more comprehensive

sarcasm detection algorithms. These algorithms

would be better equipped to detect sarcasm in

multimedia formats where meaning is conveyed

through a combination of visual and textual

elements.

4. Data Visuals

Fig 1: Non-Sarcastic Tweets Word Cloud from

GitHub Dataset

 Aamina Atlaswala. International Journal of Science, Engineering and Technology,

 2024, 12:5

5

Branch of

AI

Models Accuracy

Machine

Learning

Logistic

Regression

0.754784063578379

Deep

Learning

LSTM 0.8930022661561303

 Aamina Atlaswala. International Journal of Science, Engineering and Technology,

 2024, 12:5

6

III. RESULTS

The accuracy of Logistic Regression Model is

0.754784063578379 and of Long-Short-Term

Memory is 0.8930022661561303. This result shows

that the Machine Learning Model is more accurate

and optimal than deep Learning Model

This has proved the hypothesis of this research

false, as it was assumed that Deep Leaning Model

will be more optimal.

IV. CONCLUSION

Emojis provide a new dimension to social media

communication. We study the role of emojis for

sarcasm detection on social media. We propose a

new deep learning model by introducing an

attention layer which helps to model the text and

emojis simultaneously for sarcasm detection. The

empirical results on real-world datasets

demonstrate the effectiveness of the proposed

framework[5].

This comparative study highlights the significance

of selecting appropriate Machine Learning models

for the task, with the Logistic Regression Model

proving to be the most optimal for detecting

sarcasm in text that includes emojis. The model's

performance was notably enhanced by effective

preprocessing techniques, which played a crucial

role in improving the accuracy of sarcasm

detection.

In particular, the preprocessing of both text and

emojis was critical to achieving these optimal

results. Handling emojis correctly, alongside

refining the textual data, allowed the model to

better capture nuanced expressions of sarcasm,

which often rely on the combined meaning of text

and visual symbols. This careful preprocessing

contributed to the overall success of the Logistic

Regression Model in this context.

Limitations

In this research, we encountered several limitations

that impacted our methodology and the overall

scope of the study. One of the primary constraints

was time. The limited timeframe restricted our

ability to conduct more extensive data collection

and in-depth analysis. Certain aspects of the

research that required a longer duration, such as

longitudinal studies or repeated measures, had to

be scaled back or adjusted. This may have reduced

the breadth of insights we could have gained,

particularly when trying to capture evolving trends

or behaviors over time.

Additionally, economic limitations posed a

significant challenge. Accessing real-time tweet

data through the Twitter API, which was integral to

our research, became prohibitively expensive due

to high pricing tiers. As a result, we were unable to

collect live data directly from the platform, forcing

us to rely on alternative methods such as historical

datasets or third-party sources. This limitation

affected the freshness and relevance of the data,

potentially influencing the accuracy of our findings

and limiting our ability to make real-time

predictions or analyses.

Future Scope

There are a lot of future scope on the research. If

the limitations mentioned in this paper are not a

hurdle, then utilizing paid Tweeter API and getting

real-time tweets data will be optimal decision.

 Aamina Atlaswala. International Journal of Science, Engineering and Technology,

 2024, 12:5

7

One more future scope on this research is to use

context- based dataset in which that models are

made aware of the context for sarcasm.

Another future scope on this research topic is to

use visual meme and videos and then utilizing a

dataset made up of videos and picture and forming

a context-based data set would result in a more

purposeful sarcasm detection algorithm.

REFERENCES

1. A. Ghosh and T. Veale, "Magnets for sarcasm:

Making sarcasm detection timely contextual

and very personal", Proc. Conf. Empirical

Methods Natural Lang. Process., pp. 482-491,

2017.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp

=&arnumber=9420094

2. An attention approach to emoji focused

sarcasm detection Vandita Grovera and Hema

Banatib

https://pubmed.ncbi.nlm.nih.gov/39286068/

3. An emoji-aware multitask framework for

multimodal sarcasm detection

https://www.sciencedirect.com/science/article/a

bs/pii/S095070512201 0176

4. Exploiting Emojis for Sarcasm Detection

Jayashree Subramanian* , Varun Sridharan* , Kai

Shu and Huan Liu Computer Science and

Engineering, Arizona State University, Tempe,

AZ, USA

https://www.cs.emory.edu/~kshu5/files/sbp_20

19_usarcasm.pdf

5. Exploiting Emojis for Sarcasm Detection

DOI:10.1007/978-3-030-21741-9_8

https://www.researchgate.net/publication/3338

31290_Exploiting_Em

ojis_for_Sarcasm_Detection

6. GitHub Testing Dataset

https://raw.githubusercontent.com/muhammad

adyl/SarcasmDetection/master/data/train.tsv

7. GitHub Training Dataset

https://github.com/muhammadadyl/SarcasmDe

tection/blob/master/dat a/test.txt

