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I. INTRODUCTION 
 

The magnitude of data generated through social 

media today is colossal. They are good for data 

analysis since they are very personal [1]. Multiple 

social media platforms use this data to provide 

personalized feed and reviews. This personalize 

feed and reviews might not be 100% correct. This is 

because the sarcasm is not filtered. Sarcasm in text 

is an obstruction for less accuracy.  

 

To solve it, in this research Logistic Regression 

Model and Long-Short-Term Memory Models are 

utilized to detect sarcasm along with emoji. Emojis 

play a nuanced role in digital communication and 

have a potential to convey sarcastic intent as they 

often offer non-explicit and sometimes ambiguous 

cues. This ambiguity has a potential to fuel hate- 

speech, trolling, or cyber-bullying under the guise 

of sarcasm[2]. The emojis are preprocessed before 

training the models and making the models do 

detection i.e. emoji are converted in to text.  

 

 

Machine learning (ML) is a branch of artificial 

intelligence (AI) and computer science that focuses 

on the using data and algorithms to enable AI to 

imitate the way that humans learn, gradually 

improving its accuracy.  

 

Logistic regression is a supervised machine learning 

algorithm used for classification tasks where the 

goal is to predict the probability that an instance 

belongs to a given class or not. Logistic regression 

is a statistical algorithm which analyze the 

relationship between two data factors. Long Short-

Term Memory is an improved version of recurrent 

neural network designed by Hochreiter & Schmid 

Huber. LSTM is well-suited for sequence prediction 

tasks and excels in capturing long-term 

dependencies. Deep learning is a subset of machine 

learning that uses multi-layered neural networks, 

called deep neural networks, to simulate the 

complex decision-making power of the human 

brain. Therefore, in this paper, we study the novel 

problem of exploiting emojis for sarcasm detection 

on social media[5]. 
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II. METHODOLOGY 
 

In this section, we outline our proposed 

methodology, which focuses on utilizing emoji data 

to address the challenge of multimodal sarcasm 

detection within a multitask framework[3]. 

The methodology followed in doing this research 

has the following steps. 

 

1. Data Collection 

First step was to collect data. For which a dataset of 

tweets from GitHub is used as a secondary data. 

This was a labelled dataset. That was downloaded 

from GitHub in csv file format. 

 

2. Data Pre-Processing 

Second step is data pre-processing in which data is 

cleaned and prepared for the models to be trained 

on. Data preprocessing is a foundational step in 

readying datasets for various data-driven tasks, 

including both machine learning and deep learning. 

This crucial phase involves a series of operations 

designed to clean, structure, and refine raw data, 

ensuring its suitability for subsequent modelling 

stages. Whether applying traditional machine 

learning algorithms or deep neural networks, 

preprocessing tasks remain fundamental. Common 

operations include handling missing values, 

removing duplicates, scaling numerical features, 

and encoding categorical variables. For text data, 

tasks like tokenization, lowercasing, and removing 

stop words are commonplace. The effectiveness of 

machine learning and deep learning models is 

intricately tied to the quality of the pre-processed 

data, emphasizing the critical role of preprocessing 

in extracting meaningful patterns and insights from 

diverse datasets. 

 

Following are the preprocessing steps applied to 

refine and prepare the dataset for subsequent 

modelling stages: 

 

Removing words "sarcasm", "sarcastic", 

"sarcastically": Utilizes basic string manipulation in 

Python without the need for external libraries. This 

step ensures the explicit removal of terms that 

might bias sentiment analysis. 

Removing '#' tags only keeping the word ahead of 

it: Achieved through Python's string manipulation. 

The '#' symbol and subsequent characters are 

discarded, retaining only the relevant word. No 

external libraries are required. 

 

Removing '@' tags with the name ahead of '@': 

Employing Python string operations, this step 

eliminates Twitter handles (@username) from the 

tweet, maintaining the remaining text. External 

libraries are unnecessary for this task. 

  

Replacing emojis with their descriptions: Python's 

string handling, possibly aided by the 'emoji' library, 

transforms emojis into text descriptions for 

standardization. Ensures consistent representation 

of emoticons. 

 

Handling numbers: Standard Python string 

manipulation is applied, removing or normalizing 

numerical characters in the tweet. No external 

libraries are needed for this numerical processing. 

 

Handling non-English alphabets: Leverages Python 

string methods to either remove or replace non-

English characters. External libraries are not 

employed for this task. 

 

Handling symbols: Python's string manipulation 

addresses symbols, including punctuation and 

special characters, ensuring a clean text for analysis. 

No external libraries are required. 

 

Handling unnecessary spaces: Basic Python string 

operations are used to clean up unnecessary 

whitespace, enhancing tweet readability and 

consistency without relying on external libraries. 

 

Counting repeated letters in each word to create a 

'repetition' column: Python's string manipulation 

counts repeated letters within words. This step 

generates a 'repetition' feature. No external libraries 

are necessary. 

 

Counting capital letters in each word to create a 

'capital' column: Utilizes Python's string methods to 

count capital letters within words, creating a 
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'capital' feature without reliance on external 

libraries. 

 

Calculating sentiment scores for each word using 

SentiWordNet: Involves leveraging the 'nltk' library 

and the SentiWordNet lexical resource in Python. 

Assigns sentiment scores to words for a nuanced 

understanding of sentiment. Loading and Parsing: 

The initial step involves loading the SentiWordNet 

file into the NLP environment. Subsequently, the 

content is parsed meticulously to extract pertinent 

information crucial for sentiment analysis. Mapping 

to Text 

 

Data: Every entry in the SentiWordNet file 

corresponds to a synset (POS,ID) and is 

accompanied by associated positivity (PosScore), 

negativity (NegScore), and objectivity (ObjScore) 

scores. Simultaneously, the text data, which may 

consist of reviews or tweets, undergoes 

tokenization into words or phrases. 

 

Mapping Words to Synsets: During the 

preprocessing phase, words or phrases extracted 

from the text data are meticulously mapped to their 

corresponding synsets in the SentiWordNet file. 

This mapping entails matching words to their 

WordNet IDs and associating them with the 

appropriate part of speech (POS). 

 

Calculating Sentiment Scores: Utilizing the 

positivity, negativity, and objectivity scores from 

SentiWordNet, sentiment scores are systematically 

computed for each word or phrase in the text. 

These sentiment scores play a pivotal role in 

comprehending the overall sentiment of the text, 

where positive and negative scores signify the 

intensity of sentiment. 

 

Aggregation and Normalization: Individual 

sentiment scores attributed to words or phrases are 

often aggregated to derive an encompassing 

sentiment score for a sentence or document. 

Moreover, these scores may undergo normalization 

to ensure consistency and comparability across 

diverse texts. 

  

Threshold Determination: A critical aspect 

involves setting a threshold based on the sentiment 

analysis results. This threshold aids in classifying the 

overall sentiment of the text, categorizing it as 

positive, negative, or neutral. 

 

Integration into NLP Models: The processed 

sentiment scores seamlessly integrate into broader 

NLP models. This integration proves beneficial for 

various tasks, including sentiment classification, 

opinion mining, and emotion analysis.  

 

SentiWordNet: SentiWordNet employs a 

comprehensive scoring system to assign sentiment 

scores to words based on their positivity, negativity, 

and neutrality. These scores span a range from -1 

(most negative) to 1 (most positive), with 0 

indicating neutrality. The breakdown of scores is as 

follows: 

 

Positivity Score (PosScore) 

 Represents the positive sentiment intensity of a 

word. 

 Range: 0 to 1 (higher values indicate greater 

positivity). 

 

Negativity Score (NegScore) 

 Represents the negative sentiment intensity of 

a word. 

 Range: 0 to 1 (higher values indicate greater 

negativity). 

 

Objectivity Score (ObjScore) 

 Represents the neutrality or objectivity of a 

word. 

 Range: 0 to 1 (higher values indicate greater 

neutrality). 

 

These nuanced sentiment scores facilitate a detailed 

understanding of a word's sentiment, contributing 

to more precise sentiment analysis in natural 

language processing applications. 

 

Identifying positive and negative words based on 

sentiment scores: Building upon the 'nltk' library, 

this step determines the sentiment of words in the 

tweet, categorizing them as positive or negative 

based on their sentiment scores. 
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Tokenizing the tweet: Utilizes the 'nltk' library in 

Python to tokenize the tweet, breaking it into 

individual words or tokens for subsequent analysis. 

 

3. Model Training 

There is significant future scope for this research. If 

the limitations outlined in this paper, particularly 

time and economic constraints, can be addressed, 

utilizing the paid Twitter API to access real-time 

tweet data would be a highly beneficial next step.  

 

Real-time data would allow for more accurate and 

up-to-date analysis of sarcasm in tweets, enhancing 

the relevance and applicability of the model. This 

would improve the system’s responsiveness to 

current trends in language, emoji usage, and the 

evolving nature of sarcasm on social media. 

 

Another promising direction for future research is 

the incorporation of context-based datasets. 

Sarcasm often relies heavily on the context in which 

it is expressed, and building models that are aware 

of the broader conversational or situational context 

could significantly improve sarcasm detection.  

 

Developing datasets that provide contextual 

information, rather than analyzing isolated tweets 

or short text segments, would help models to better 

interpret sarcasm. 

  

Furthermore, expanding the scope to include visual 

memes and videos offers another potential area for 

future exploration. Sarcasm is not limited to textual 

expression; it often appears in multimedia formats.  

 

By utilizing datasets made up of images, videos, 

and memes, and integrating context-aware models, 

researchers could create more comprehensive 

sarcasm detection algorithms. These algorithms 

would be better equipped to detect sarcasm in 

multimedia formats where meaning is conveyed 

through a combination of visual and textual 

elements. 

 

 

 

 

 

4. Data Visuals 

 
 

 
Fig 1: Non-Sarcastic Tweets Word Cloud from 

GitHub Dataset 
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Branch of 

AI 

Models Accuracy 

Machine 

Learning 

Logistic 

Regression 

0.754784063578379 

Deep 

Learning 

LSTM 0.8930022661561303 
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III. RESULTS 
 

The accuracy of Logistic Regression Model is 

0.754784063578379 and of Long-Short-Term 

Memory is 0.8930022661561303. This result shows 

that the Machine Learning Model is more accurate 

and optimal than deep Learning Model  

 

This has proved the hypothesis of this research 

false, as it was assumed that Deep Leaning Model 

will be more optimal. 

 

 

 
 

IV. CONCLUSION  
 

Emojis provide a new dimension to social media 

communication. We study the role of emojis for 

sarcasm detection on social media. We propose a 

new deep learning model by introducing an 

attention layer which helps to model the text and 

emojis simultaneously for sarcasm detection. The 

empirical results on real-world datasets 

demonstrate the effectiveness of the proposed 

framework[5]. 

 

This comparative study highlights the significance 

of selecting appropriate Machine Learning models 

for the task, with the Logistic Regression Model 

proving to be the most optimal for detecting 

sarcasm in text that includes emojis. The model's 

performance was notably enhanced by effective 

preprocessing techniques, which played a crucial 

role in improving the accuracy of sarcasm 

detection. 

 

In particular, the preprocessing of both text and 

emojis was critical to achieving these optimal 

results. Handling emojis correctly, alongside 

refining the textual data, allowed the model to 

better capture nuanced expressions of sarcasm, 

which often rely on the combined meaning of text 

and visual symbols. This careful preprocessing 

contributed to the overall success of the Logistic 

Regression Model in this context. 

 

Limitations 

In this research, we encountered several limitations 

that impacted our methodology and the overall 

scope of the study. One of the primary constraints 

was time. The limited timeframe restricted our 

ability to conduct more extensive data collection 

and in-depth analysis. Certain aspects of the 

research that required a longer duration, such as 

longitudinal studies or repeated measures, had to 

be scaled back or adjusted. This may have reduced 

the breadth of insights we could have gained, 

particularly when trying to capture evolving trends 

or behaviors over time. 

 

Additionally, economic limitations posed a 

significant challenge. Accessing real-time tweet 

data through the Twitter API, which was integral to 

our research, became prohibitively expensive due 

to high pricing tiers. As a result, we were unable to 

collect live data directly from the platform, forcing 

us to rely on alternative methods such as historical 

datasets or third-party sources. This limitation 

affected the freshness and relevance of the data, 

potentially influencing the accuracy of our findings 

and limiting our ability to make real-time 

predictions or analyses. 

 

Future Scope 

There are a lot of future scope on the research. If 

the limitations mentioned in this paper are not a 

hurdle, then utilizing paid Tweeter API and getting 

real-time tweets data will be optimal decision. 
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One more future scope on this research is to use 

context- based dataset in which that models are 

made aware of the context for sarcasm. 

 

Another future scope on this research topic is to 

use visual meme and videos and then utilizing a 

dataset made up of videos and picture and forming 

a context-based data set would result in a more 

purposeful sarcasm detection algorithm. 
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