
 SVS Satish, 2025, 13:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 SVS Satish. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Intellicheck – Plagiarism Detector Using HMM, BERT

and Abstract Syntax Tree

SVS Satish, S D Anirudh, P Chandu, K Suhaas Varma, Assistant Professor P.Jyothi

Department of Computer Science and Engineering, Maharaj Vijayaram Gajapathi Raj College of Engineering

(Autonomous), Andhra Pradesh, India

I. INTRODUCTION

In today’s digital world, the ease of accessing and

sharing information has significantly increased

instances of plagiarism. From academia to the

software industry, plagiarism undermines the value

of intellectual property, affecting credibility,

fairness, and originality. Text-based plagiarism,

which involves the replication of written content,

compromises the authenticity of academic work

and scientific research. Meanwhile, source code

plagiarism is a growing concern in software

development, as it undermines the innovative

efforts of programmers by copying logic, structure,

and design.

Abstract- In the modern era of widespread access to information and digital resources, plagiarism detection

has become increasingly essential for preserving academic integrity and protecting intellectual property. This

research focuses on the design and development of a dual-functional plagiarism detection system capable of

analyzing both text and source code submissions. The text-based detection module employs a Hidden

Markov Model (HMM) to evaluate textual similarity and utilizes a BERT model to understand and compare

the semantic meaning of the content. The source code module leverages Abstract Syntax Trees (AST) to

identify structural similarities in programming code, offering precise detection of plagiarized logic and

patterns. The proposed system bridges the gap between surface-level content analysis and deeper contextual

and structural understanding, making it a robust and comprehensive tool for a wide array of applications.

This paper also addresses implementation challenges, evaluates system performance metrics such as

precision and recall, and suggests potential future enhancements, including the incorporation of multilingual

support and the expansion to more programming languages. By integrating advanced technologies, this

system provides a reliable solution for detecting plagiarism in academic, research, and software development

environments, ensuring fairness and originality.

Keywords- Plagiarism Detection, Hidden Markov Model (HMM), BERT Model, paraphrase-MiniLM-L6- v2,

Abstract Syntax Tree (AST), Text Similarity, Semantic Analysis, Source Code Analysis, Tree-Edit Distance,

Machine Learning, Preprocessing Techniques, Accuracy, Precision, Recall, F1-Score, Text Preprocessing, Code

Normalization, Tokenization, Stopword Removal, Stemming, Data Parsing, Structural Similarity, Probabilistic

Models, Logical Flow Analysis, Cross-Validation, Evaluation Metrics, User Interface, Plagiarism Report,

Academic Integrity, Software Development, Structural Patterns.

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

2

The limitations of existing plagiarism detection

systems further exacerbate the problem. Current

solutions are often narrowly focused, with text-

based tools relying on superficial keyword

matching, and source code checkers limited to

basic pattern recognition. These tools struggle to

account for deeper contextual or structural

similarities, leading to inaccurate or incomplete

results. As a result, there is an urgent need for a

more holistic plagiarism detection system that can

efficiently and effectively detect similarities across

both textual and programming domains.

This paper presents a plagiarism detection system

designed to address these challenges. The system

offers two options for users: one for detecting

plagiarism in text-based content and another for

analyzing source code. The text- based plagiarism

checker integrates advanced models such as the

Hidden Markov Model (HMM) for identifying

textual similarity and BERT for analyzing semantic

meaning. On the other hand, the source code

plagiarism checker utilizes Abstract Syntax Trees

(AST) to identify structural and logical similarities in

programming code. By combining these

methodologies, the proposed system provides a

robust and comprehensive solution to tackle

modern plagiarism challenges.

1. Existing System

Current plagiarism detection systems have several

significant shortcomings. Text- based plagiarism

tools primarily rely on basic methods such as

keyword matching or string similarity, which can

only identify exact matches or superficial patterns.

This approach often leads to a high rate of false

positives and fails to detect deeper contextual or

semantic similarities in the text. Furthermore, these

systems are unable to process large datasets

effectively or analyze multilingual content, limiting

their scope of application.

Similarly, source code plagiarism detection tools are

largely limited to simple pattern- matching

techniques, which overlook structural and logical

similarities. For instance, minor alterations in

variable names or function definitions are sufficient

to bypass detection in existing systems. Most tools

fail to analyze the underlying logic or syntactic

structure of programming code, leading to

unreliable results. Additionally, there is a lack of

integrated platforms that can handle both text and

source code plagiarism, requiring users to rely on

multiple, fragmented solutions.

These limitations underscore the need for a more

advanced and holistic approach to plagiarism

detection. A system capable of addressing both

textual and structural similarities while reducing

false positives and improving accuracy can

significantly enhance plagiarism detection efforts

across various domains.

II. PROPOSED SYSTEM

To overcome the deficiencies of existing systems,

this paper proposes a unified plagiarism detection

system designed to handle both text-based and

source code submissions. The system is equipped

with advanced technologies to deliver accurate,

efficient, and comprehensive plagiarism detection.

1. Text-Based Plagiarism Checker

Hidden Markov Model (HMM): This model

evaluates textual similarity by analyzing the

sequence of words and their probabilistic

relationships. HMM ensures that patterns and

repetitions within the text are effectively identified.

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

3

BERT Model: BERT performs semantic analysis,

allowing the system to comprehend and compare

the deeper meaning of textual content. This ensures

that context and intent are accounted for, reducing

false positives and improving accuracy.

2. Source Code Plagiarism Checker

Abstract Syntax Trees (AST): AST parses the

source code into a tree structure, enabling the

system to analyze the syntactic and structural

components of the code. This method ensures the

detection of copied logic and patterns, even when

superficial changes such as variable renaming or

code formatting have been made.

The proposed system offers a seamless and user-

friendly experience for detecting plagiarism in both

text and source code. By combining these

methodologies, the system delivers a reliable and

accurate tool that meets the needs of academic

institutions, researchers, and software developers.

The integration of these techniques bridges the gap

between surface-level analysis and deeper

contextual and structural understanding, making it

a valuable contribution to the field of plagiarism

detection.

III. METHODOLOGY

The methodology for the proposed plagiarism

detection system focuses on two distinct areas:

text-based content analysis and source code

analysis. Each module employs advanced

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

4

computational techniques to ensure accurate and

efficient plagiarism detection.

1. Text-Based Plagiarism Checker

The text-based module integrates two key models

to achieve high accuracy in detecting similarities:

Hidden Markov Model (HMM)

HMM is used to evaluate textual similarity by

analyzing the sequences of words and their

probabilistic relationships. This model effectively

identifies repetitive patterns and subtle similarities

between documents.

Formula: P(O|λ) = sum(P(O|Q, λ) * P(Q|λ))

Where:

• P(O|λ) is the probability of the observed

sequence O given the model λ.

• Q is a possible sequence of states.

• λ represents the model parameters, including

transition, emission, and initial probabilities.

BERT Model

BERT, specifically the paraphrase-MiniLM-L6-v2

variant, is used to analyze and compare the

semantic meaning of text. This model excels at

understanding context and intent, making it ideal

for detecting paraphrased content.

Formula: Cosine Similarity = (A . B) / (||A|| * ||B||)

Where:

• A and B are the vector embeddings of the two

texts.

• (A . B) is the dot product of the vectors.

• ||A|| and ||B|| are the magnitudes of the vectors.

By combining HMM and the BERT paraphrase-

MiniLM-L6-v2 model, the text-based checker is

capable of identifying both surface-level and

contextual similarities, significantly improving

accuracy and reducing false positives.

2. Source Code Plagiarism Checker

The source code analysis module employs Abstract

Syntax Trees (AST) to detect structural and logical

similarities in programming code. AST parses

source code into a hierarchical tree structure, where

each node represents a syntactic construct.

AST allows the system to analyze the logic and

structure of code, detecting plagiarism even when

the code is obfuscated (e.g., through variable

renaming or formatting changes).

Formula: Tree-Edit Distance = sum(Cost of Inserts,

Deletes, and Replacements)

The AST-based analysis ensures that the system

identifies plagiarized logic and patterns at a deeper

level, making it a robust solution for software

developers and educators.

3. Preprocessing Steps

Both modules involve preprocessing stages to

standardize input data and enhance performance:

4. Text Preprocessing

• Tokenization: Splitting text into words or

sentences.

• Stopword Removal: Filtering out common

words (e.g., "the," "is") that do not add

significant meaning.

• Stemming/Lemmatization: Reducing words to

their base forms (e.g., "running" becomes

"run").

5. Code Preprocessing

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

5

Normalization: Removing comments, extra

whitespaces, and formatting inconsistencies.

Parsing: Converting source code into AST for

structural analysis.

IV. IMPLEMENTATION

The implementation of the proposed plagiarism

detection system involves a series of steps designed

to ensure effective and accurate plagiarism

detection for both text-based content and source

code. This section outlines the key stages of the

implementation process.

1. Training the Models

Text-Based Plagiarism Checker

HMM and BERT Models: The Hidden Markov

Model (HMM) and the BERT (paraphrase-MiniLM-

L6-v2) model are trained on datasets containing

examples of both plagiarized and original text. The

training data includes a diverse range of documents

to cover various writing styles and contexts. The

HMM focuses on identifying textual patterns, while

BERT analyzes semantic meaning.

Source Code Plagiarism Checker:

AST Parsing: Source code files are parsed into

Abstract Syntax Trees (ASTs). The training dataset

consists of multiple programming languages and

coding styles. The AST-based model learns to

detect structural and logical similarities in code,

even when superficial changes (such as variable

renaming or formatting) are made.

2. Evaluating Performance

The system’s performance is evaluated using

several metrics to ensure its accuracy and reliability:

Accuracy: Accuracy measures the proportion of

correctly identified plagiarism cases.

Formula: Accuracy = (True Positives + True

Negatives) / Total Samples

Precision: Precision indicates the proportion of true

plagiarism cases out of all detected cases. Formula:

Precision = True Positives / (True Positives + False

Positives)

Recall: Recall reflects the system’s ability to identify

all actual plagiarism cases. Formula: Recall = True

Positives / (True Positives + False Negatives)

 F1-Score combines precision and recall into a

single metric. Formula: F1-Score = 2 * (Precision *

Recall) / (Precision + Recall)

Cross-validation techniques, such as K-fold cross-

validation, are employed to ensure the models'

robustness and prevent overfitting. These

evaluation methods help in assessing the system's

overall performance and identifying areas for

improvement.

3. User Interface

The system includes a user-friendly interface that

allows users to upload text documents and source

code files for plagiarism detection. The interface is

designed to be intuitive and accessible to a wide

range of users, including academic institutions,

researchers, and software developers.

4. Features

• Text Upload Feature: Users can upload text

documents in various formats (e.g., DOCX, PDF,

TXT) for similarity analysis.

• SOURCE CODE SUBMISSION PLATFORM:

USERS CAN upload source code files in

different programming languages for structural

analysis.

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

6

• Plagiarism Report: The system generates a

detailed plagiarism report that highlights

matched sections and provides an overall

• Similarity Score. The report includes insights

on both textual and structural similarities,

helping users understand the extent of

plagiarism.

V. GRAPHICAL USER INTERFACE(GUI)

RESULTS

The GUI is developed using the MERN stack with

integrated flask framework. The GUI consists of a

Home Page, Check Plagiarism page, Login Page,

History Page, Feedback Modal and requesting a

demo modal

Welcome or Home Page

Figure 1 and 2 shows the welcome page of the

Intellicheck

Check Plagiarism Page

Figure 3 and 4 shows the check plagiarism page i.e.,

the interface where you need to submit the text to

check plagiarism

Login Page

Figure 5 and 6 shows the Login and History page

History Page

Figure 7 shows the History Page where the

documents are not accessible but sessions are

available

Feedback or Contact Modal

Figure 8 shows the contact modal where users can

be able to provide feedback about the App

Demo Modal

Figure 9 shows the Demo modal where user can

request a demo and will be notified once the demo

is scheduled by admins

Result Page

The Result Page displays the plagiarism analysis

results after submitting text or source code. Users

can upload their content, extract text, and check for

plagiarism.

Figure 10 Shows the process of uploading a

document and extracting text.

Figure 11 Displays the interface for submitting text

and checking plagiarism.

Figure 12 Demonstrates the submission of source

code for plagiarism detection.

This page provides a detailed plagiarism report,

including semantic similarity, structural similarity,

and overall similarity scores through graphical

representations such as bar charts and circular

progress indicators.

Figure 1. Welcome page – 1

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

7

Figure 2. Welcome page – 2

Figure 3. Check Plagiarism page – 1

Figure 4. Check Plagiarism page – 2

Figure 5. Login Page

Figure 6. Register page

Figure 7. History Page

Figure 8. Feedback or Contact Modal

Figure 9. Request a demo Modal

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

8

Figure 10. Uploading text/Interface

Figure 11. Plagiarism result

Figure 12. Source Code

VI. CONCLUSIONS

The Intellicheck system uses sophisticated

techniques to accurately identify cases of

plagiarism. By applying Hidden Markov Models

(HMMs) to assess structural similarities and utilizing

natural language processing tools, the system

compares input text against a predefined database.

During the development phase, various HMMs were

tested, such as Multinomial HMM for analyzing

token distributions and Structural HMM for

identifying sequence patterns. However, these

approaches did not achieve the desired level of

accuracy.

After thorough testing, the team selected the

Gaussian HMM as the primary model because of its

superior ability to detect complex patterns in text.

This model effectively identifies both traditional and

AI-generated instances of plagiarism. By focusing

on the Gaussian HMM, Intellicheck ensures reliable

and precise plagiarism detection, making it an

excellent tool for analyzing text and identifying

similarities.

REFERENCES

1. Meuschke, N, Gipp, B. (2019). Academic

Plagiarism Detection: A Systematic Literature

Review. ACM Computing Surveys, 52(6).

https://doi.org/10.1145/3345317

2. Dixit, A., Unnathi, P. N., Guttedar, R. J., & More,

S. (2024). Advancements in Plagiarism

Detection: A Comprehensive Review. Journal of

Emerging Technologies

https://www.jetir.org/papers/JETIR2404050.pdf

3. Meuschke, N., & Gipp, B. (2013). State- of-the-

art in detecting academic plagiarism.

International Journal for Educational Integrity,

9(1),50-71.

https://doi.org/10.21913/IJEI.v9i1.899

4. Maurer, H. A., Kappe, F., & Zaka, B. (2006).

Plagiarism—a survey. Journal of Universal

Computer Science, 12(8), 1050-1084.

https://doi.org/10.3217/jucs-012-08-1050

5. Potthast, M., Stein, B., & Anderka, M. (2008). A

Wikipedia-based multilingual retrieval model

 SVS Satish. International Journal of Science, Engineering and Technology,

 2025, 13:2

9

for plagiarism detecti. In European Conference

on Information Retrieval

https://doi.org/10.1007/978-3-540-78646-7_81

6. Alzahrani, S. M., Salim, N., & Abraham,vA.

(2012). Understanding plagiarism linguistic

patterns, textual features, and detection

methods. IEEE Transactions on Systems, Man,

and

https://doi.org/10.1109/TSMCC.2011.2134847

7. Mor, B., Garhwal, S., & Kumar, A. (2021). A

Systematic Review of Hidden Markov Models

and Their Applications. Archives of

Computational Methods in Engineering, 28,

https://doi.org/10.1007/s11831-020-09422-4

8. Gupta, A., & Dhingra, B. (2012). Stock Market

Prediction Using Hidden Markov Models.

IEEE Conference Proceedings.

https://users.cs.duke.edu/~bdhingra/papers/st

ock_hmm.pdf

9. Gudala, C., Padi, T. R., Rekha, S., & Dar, Q. F.

(2022). Stochastic Modeling for the Analysis

and Forecasting of Stock Market Trend using

Hidden Markov Model. Asian Journal of

Probability and Statistics, 18(1), 43-56.

10. Resmi, N. G., & Soman, K. P. (2014). Abstract

Syntax Tree Generation Using Modified

Grammar for Source Code Plagiarism Detection.

International Journal of Computer Applications

in Technology, https://ijcat.org/articles/1-

6/Abstract-Syntax- Tree-Generation-using-

Modified-Grammar- for-Source-Code-

Plagiarism-Detection.html

