
RamaKrishna Manchana, 2018, 6:2
ISSN (Online): 2348-4098
ISSN (Print): 2395-4752

International Journal of Science,
Engineering and Technology

An Open Access Journal

© 2018 RamaKrishna Manchana. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

Java Dump Analysis: Techniques and Best Practices
RamaKrishna Manchana

Senior Technology Architect Bangalore, KA, India

I. INTRODUCTION

Java applications are the backbone of numerous
enterprise systems, powering everything from web
servers to large-scale distributed applications.
However, these systems often face performance
challenges, unexpected crashes, and resource
management issues that can disrupt operations.
Diagnosing the root causes of such problems can
be complex, particularly when dealing with intricate
multi-threaded environments or high-memory
usage scenarios.

JVM dumps—core, thread, and heap—offer critical
insights into the state of a Java application at a
specific moment, allowing developers to
troubleshoot, diagnose, and resolve issues
effectively. These dumps capture snapshots of the
JVM's internal state, including memory content,
thread execution details, and object allocations,
providing a wealth of data that can be used to
pinpoint performance bottlenecks, memory leaks,
and other anomalies.

The goals of this paper are to:
 Provide a comprehensive understanding of JVM

dumps and their role in application diagnostics.
 Detail the collection procedures, tools, and

analysis techniques for core, thread, and heap
dumps.

 Explore best practices, common challenges, and
mitigation strategies in dump analysis.

 Present real-world case studies to illustrate the

practical application of dump analysis in solving
critical performance issues.

II. LITERATURE REVIEW

The practice of Java dump analysis, encompassing
thread, heap, and core dumps, is a critical technique
for diagnosing performance issues, memory leaks,
and application failures in Java applications. The
literature surrounding JVM dump analysis
highlights its evolution, key methodologies, tools,
and best practices, emphasizing its role in
enhancing the reliability and performance of Java-
based systems.

1. Overview of JVM Dumps
Java Virtual Machine (JVM) dumps—specifically
core, thread, and heap dumps—serve as essential
diagnostic tools that provide a snapshot of an
application’s state at a specific moment in time.
These dumps capture critical information such as
memory contents, thread execution details, and
object allocations, which are invaluable for post-
mortem analysis of performance issues and
application crashes.

Core Dumps
Core dumps are low-level memory snapshots
generated when an application crashes due to
severe errors such as segmentation faults or illegal
instructions. They capture the entire state of the

Abstract- This paper explores the methods, tools, and best practices involved in Java Virtual Machine (JVM) dump

analysis, specifically focusing on thread, heap, and core dumps. The goal is to provide a comprehensive

understanding of how these dumps can be utilized to diagnose performance issues, memory leaks, and application

failures in Java applications.

Keywords- JVM, Core Dump, Thread Dump, Heap Dump, Java, Memory Analysis, Performance Tuning

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

2

JVM, including memory, register values, process
context, and loaded libraries, offering a detailed
view of the application's execution environment at
the time of failure.

Thread Dumps
Thread dumps capture the execution state of all
threads within the JVM, including stack traces,
method calls, and synchronization status. They are
particularly useful for identifying performance
bottlenecks, deadlocks, and issues related to thread
management in multi-threaded applications.

Heap Dumps
Heap dumps provide a comprehensive view of the
JVM’s heap memory, detailing the objects
occupying memory, their references, and
interactions. These dumps are critical for
diagnosing memory leaks, high memory
consumption, and garbage collection inefficiencies.

2. Historical Development and Key
Advancements
The use of JVM dumps for diagnostics has evolved
significantly over the years, with advancements in
both the tools used for dump collection and the
analysis techniques employed. Early dump analysis
relied heavily on manual inspection of raw data,
which was both time-consuming and error-prone.
The introduction of sophisticated tools and
automated analysis methods has greatly enhanced
the efficiency and accuracy of JVM dump analysis.

Early Dump Analysis
In the initial phases of Java development, dump
analysis was often performed manually using basic
tools like jstack for thread dumps and jmap for
heap dumps. Analysts had to interpret raw stack
traces and memory dumps, which required deep
expertise in JVM internals and significant time
investment.

Automated Analysis Tools
The development of tools such as Eclipse Memory
Analyzer (MAT), JVisualVM, and Java Mission
Control (JMC) revolutionized dump analysis by
providing user-friendly interfaces, automated heap
analysis, and detailed reports on memory usage

and object retention. These tools have made it
easier to identify problematic areas, such as large
retained heaps, memory leaks, and deadlocked
threads, without requiring extensive manual
intervention.

3. Comparative Studies of Dump Types and
Analysis Techniques
Comparative studies in the field have explored the
effectiveness of different dump types and analysis
techniques, focusing on their applicability in various
diagnostic scenarios.

Core vs. Heap vs. Thread Dumps
Each type of dump offers unique insights into the
JVM’s state, and their use often depends on the
nature of the issue being diagnosed. Core dumps
are essential for diagnosing application crashes and
low-level failures, while heap dumps are invaluable
for resolving memory-related issues. Thread dumps,
on the other hand, are the go-to tool for
addressing performance bottlenecks related to
thread management.

Case Studies in Dump Analysis
Numerous case studies have demonstrated the
practical application of dump analysis in resolving
complex performance and stability issues. For
example, one study highlighted how heap dump
analysis using Eclipse MAT helped diagnose a
severe memory leak in a high- transaction financial
application, leading to a 40% reduction in memory
consumption through optimized caching strategies.

4. Tools and Utilities for JVM Dump Analysis
Modern dump analysis heavily relies on a range of
tools designed to collect, analyze, and interpret
JVM dumps efficiently. These tools vary in
functionality, from basic command-line utilities to
advanced graphical profilers.

JVisualVM and Java Mission Control (JMC)
Both tools offer comprehensive monitoring and
diagnostic capabilities, including real-time thread
and heap dump analysis. JMC, in particular,
provides low-overhead monitoring and detailed
event data, making it a preferred choice for in-
depth JVM performance tuning.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

3

Eclipse Memory Analyzer (MAT)
MAT is specifically designed for heap dump
analysis, excelling in identifying memory leaks,
analyzing object retention, and optimizing memory
usage. Its powerful query language and automated
reports provide valuable insights into JVM memory
behavior.

Third-Party Profilers
Tools like YourKit Profiler, AppDynamics, and New
Relic offer advanced JVM monitoring and profiling
features that go beyond the capabilities of standard
JDK tools, providing integration with broader
system observability and application performance
monitoring frameworks.

5. Challenges in JVM Dump Analysis
Despite the availability of advanced tools, JVM
dump analysis presents several challenges,
including large data volumes, performance
overhead, and the complexity of accurately
interpreting dump data.

Large Data Volumes
Heap dumps, in particular, can be extremely large,
consuming significant disk space and requiring
substantial processing power to analyze. Mitigation
strategies include using sampling techniques,
optimizing collection settings, and focusing analysis
on the most critical data.

Performance Overhead
The act of collecting dumps, especially heap dumps,
can introduce performance overhead, slowing down
the application during data capture. To minimize
this impact, best practices involve scheduling dump
collection during low-traffic periods or using
remote agents to offload collection tasks.

Accurate Interpretation of Data
Misinterpreting dump data can lead to incorrect
conclusions and ineffective troubleshooting. Cross-
referencing dump analysis results with other
performance logs, engaging experienced
developers, and utilizing collaborative tools for
sharing insights are critical strategies for
overcoming these challenges.

6. Best Practices and Future Trends
Best practices in JVM dump analysis focus on
enhancing the efficiency and accuracy of data
collection and interpretation, while emerging trends
point towards the integration of automated analysis
and cloud-native adaptations.

Automated Dump Triggers
Configuring JVM flags to automatically capture
dumps during critical events, such as out- of-
memory errors or deadlocks, ensures that valuable
diagnostic information is captured without
requiring manual intervention.

Enhancing Dump Readability
Collecting dumps in formats compatible with
advanced analysis tools, filtering non-critical
threads, and documenting findings systematically
are key practices that improve the overall
diagnostic process.

Future Trends
The future of JVM dump analysis is likely to see
increased automation, with AI-driven insights and
predictive analytics playing a larger role in
identifying performance issues before they impact
application stability. Additionally, the adaptation of
dump analysis techniques to cloud-native and
containerized environments will continue to evolve,
providing new opportunities for integrating JVM
diagnostics into modern DevOps workflows.

III. TYPES OF DUMPS

JVM dumps serve as essential diagnostic tools for
investigating the internal state of a Java application.
Each type of dump—core, thread, and heap—
provides unique insights that help in diagnosing
specific types of issues. Below, we delve into the
concepts, purposes, and applications of these
dumps in greater detail.

1. Core Dump
A core dump, also known as a crash dump, is a
memory snapshot of a running process
automatically created by the operating system
when a fatal error or unhandled exception occurs.
Core dumps capture the state of the JVM, including

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

4

its memory, register values, process context, and
loaded libraries, making them invaluable for post-
mortem analysis of application crashes.

Key Concepts and Components
 Memory Snapshot: Captures the entire

memory state of the JVM, including stack, heap,
and program counter values at the time of the
crash.

 Crash Diagnostics: Used to diagnose severe
issues such as segmentation faults, illegal
instructions, and other low-level failures.

 Operating System Level: Core dumps are
generated by the OS and may require
conversion to be usable by Java diagnostic
tools.

 When/Why to Use Core Dump Analysis:
 Application Crashes: Core dumps are critical

for understanding why an application crashed,
especially when it involves low-level system
errors.

 Hung Processes: Useful for diagnosing
processes that appear to be hung or
unresponsive, revealing the underlying cause of
the hang.

 Multi-Threaded Issues: Provides visibility into
thread states and memory at the time of the
crash, helping to identify deadlocks or race
conditions.

Collection Procedures
 Linux/Solaris: Use coreadm to manage core

dump settings and manually trigger dumps
with commands like .dump /f crash.dmp.

 Windows: The Dr. Watson utility automatically
generates core dumps upon crashes, and
manual generation can be done using the
.dump command.

 Conversion for Analysis: Core dumps must be
converted to HPROF format using tools like
jmap (jmap - dump:format=b,file=dump.hprof)
to be compatible with Java-based analysis
tools.

2. Thread Dump
A thread dump is a snapshot of all threads running
within the JVM at a given point in time. It provides
a detailed view of each thread’s state, including its

stack trace, method calls, and synchronization
status. Thread dumps are particularly useful for
diagnosing performance bottlenecks, deadlocks,
and issues related to thread management.

Key Concepts and Components
 Stack Trace: Displays the sequence of method

calls that are currently being executed by each
thread.

 Thread States: Threads can be in various
states, such as RUNNABLE, BLOCKED, WAITING,
and TIMED_WAITING, each indicating different
performance scenarios.

 Synchronization and Contention: Thread
dumps show which threads are waiting for
locks, highlighting potential contention points
and deadlocks.

 When/Why to Use Thread Dump Analysis:
 Performance Issues: Analyze thread dumps

when an application runs slower than expected
to identify threads consuming excessive CPU or
waiting for resources.

 Deadlock Detection: Detect deadlocks where
two or more threads are stuck waiting on each
other, preventing any progress.

 Unresponsive Applications: Troubleshoot
unresponsive or hanging applications by
examining what threads are doing and
identifying blocking threads.

Collection Procedures
 Manual Collection: Use jstack to manually

collect thread dumps, which can also be done
using graphical tools like JVisualVM and JMC.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

5

 Automated Collection: Configure JVM flags to
automatically trigger thread dumps when
specific conditions are met, such as high CPU
usage or unhandled exceptions.

 Remote Collection: Utilize service agents like
jsadebugd to collect thread dumps from
remote JVM instances.

3. Heap Dump
A heap dump is a snapshot of the JVM’s heap
memory, providing a detailed view of the objects
that occupy memory, their references, and their
interactions. Heap dumps are essential for
diagnosing memory-related issues such as leaks,
high memory consumption, and garbage collection
inefficiencies.

Key Concepts and Components
 Objects and References: Includes all objects in

the heap, their fields, values, and references to
other objects.

 Garbage Collection Roots: Identifies objects
that are reachable by the JVM and are
preventing other objects from being garbage
collected.

 Dominator Trees: Show the largest objects in
the heap and their relationships, helping to
pinpoint memory hogs.

 When/Why to Use Heap Dump Analysis:
 Memory Leaks: Diagnose memory leaks by

identifying objects that are not being released,
even when they are no longer needed.

 Out-of-Memory Errors: Analyze heap dumps
when out-of- memory errors occur to
understand which objects are consuming the
most memory.

 Performance Tuning: Monitor and optimize
garbage collection performance and identify
memory usage patterns.

Collection Procedures
 Manual Collection: Use jmap with the -dump

flag to collect heap dumps from running JVM
processes.

 Graphical Tools: JVisualVM and Eclipse
Memory Analyzer (MAT) offer user-friendly
interfaces for collecting and analyzing heap
dumps.

 Automatic Collection: Configure JVM to
automatically capture heap dumps upon
encountering memory-related exceptions.

IV. CORE DUMP ANALYSIS

Core dumps are often generated automatically by
the operating system when a fatal error occurs, but
they can also be triggered manually. Proper
configuration and understanding of the
environment are essential to ensure core dumps are
collected when needed.

Key Tools and Methods
 Linux/Solaris: Use the coreadm command to

configure core dump settings. Core dumps can
be generated manually using commands such
as .dump /f crash.dmp.

 Windows: The Dr. Watson utility on older
Windows versions can automatically generate
core dumps upon application crashes. Manual
core dumps can be triggered using debugging
tools with the .dump command.

 Permissions and Environment Settings:
Ensure that the JVM and operating system have
appropriate permissions to write core dumps,
and sufficient disk space is allocated to store
them.

Conversion for Java Analysis
 Core dumps must be converted to a format

that can be analyzed with Java tools. The jmap
utility is commonly used for this conversion
(jmap - dump:format=b,file=dump.hprof),
producing a heap dump file that can be further
analyzed using Java-specific tools.

V. FATAL ERROR LOGS AND THEIR

ANALYSIS

Fatal error logs are automatically generated by the
JVM when a fatal error, such as a crash or severe
exception, occurs.

These logs contain crucial information that helps in
diagnosing the cause of the error and
understanding the state of the JVM at the time of
the incident.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

6

1. What are Fatal Error Logs?
A fatal error log is created when a fatal error occurs
in the JVM, capturing the state of the JVM at the
exact moment of failure. By default, these logs are
generated in the current working directory, but
they can also be directed to other locations using
the JVM parameter -
XX:ErrorFile=./hs_err_pid<pid>.log.

Key Components of Fatal Error Logs
 Header Section: Provides details about the

error type, such as the signal or exception that
triggered the fatal error.

 Thread Information Section: Contains
information about the thread that caused the
error, including the thread’s stack trace.

 Process Information Section: Includes JVM
version, configuration details, command-line
arguments, and environment variables.

 System Information Section: Describes the
operating system, CPU details, and native
libraries loaded at the time of the crash.

2. When/Why to Use Fatal Error Logs?
Fatal error logs are crucial for diagnosing severe
application crashes and unhandled exceptions that
disrupt normal operations. These logs provide
insights that are not available through standard
application logs, making them indispensable for:
 Understanding Low-Level Failures: Analyzing

the exact conditions that led to JVM
termination.

 Post-Mortem Analysis: Reconstructing the
sequence of events leading up to the crash to
identify the root cause.

 Improving JVM Stability: Using log data to
make informed decisions on JVM tuning, error
handling, and crash prevention strategies.

3. Analysis Techniques for Fatal Error Logs
To analyze fatal error logs effectively, it’s essential
to focus on specific sections that provide the most
valuable information:
 Error Identification: Start by examining the

error code, operating system signal, or
exception type mentioned in the header.

 Thread and Stack Analysis: Review the stack
trace of the thread that caused the error,

identifying problematic code paths or resource
contentions.

 System and Configuration Insights: Use
system details to check for misconfigurations,
outdated libraries, or incompatible JVM settings
that could have contributed to the crash.

VI. THREAD DUMP ANALYSIS

Thread dumps provide a detailed view of what each
thread in the JVM is doing at a given moment,
making them vital for diagnosing issues related to
thread management, performance bottlenecks, and
application responsiveness.

1. Collection Procedure
Thread dumps capture the execution state of all
JVM threads at a specific moment, providing
insights into thread behavior and resource usage.
They can be collected both manually and
automatically, depending on the diagnostic needs.

Key Tools and Methods
 jstack: A command-line utility included with

the JDK that captures thread dumps of a
running Java process. It is simple to use and
provides detailed stack traces for each thread.

 JVisualVM: A graphical monitoring tool that
comes with the JDK, offering real-time thread
monitoring and the ability to capture thread
dumps with a single click.

 Java Mission Control (JMC): Provides
advanced monitoring and diagnostic
capabilities, allowing the capture of thread
dumps alongside other JVM metrics for a
comprehensive view of application
performance.

Automated Collection
 Thread dumps can be automatically triggered

using JVM flags such as -
XX:+PrintConcurrentLocks and -
XX:+HeapDumpOnOutOfMemoryError. These
settings help capture thread dumps when
specific conditions, like high CPU usage or
deadlocks, are detected.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

7

2. Thread States and Their Implications
Understanding thread states is crucial for
interpreting thread dumps and identifying
problematic threads that could be impacting
performance. The primary thread states include:
 New: The thread is created but has not yet

started execution.
 Runnable: The thread is actively executing in

the JVM and utilizing CPU resources. However,
it may also appear as RUNNABLE if it is waiting
for system resources like I/O.

 Blocked: The thread is waiting for a monitor
lock to enter a synchronized block or method.
High numbers of blocked threads indicate
contention issues that need addressing.

 Waiting: The thread is waiting indefinitely for
another thread to perform a particular action,
such as releasing a lock.

 Timed_Waiting: Similar to WAITING, but with a
maximum wait time defined by parameters like
sleep, wait, or join methods.

3. Key Concepts in Thread Dump Analysis
 Stack Trace: Each thread’s stack trace shows

the method calls in progress and their
sequence, providing insights into what the
thread is doing at the time of the dump.

 Thread Contention: Occurs when multiple
threads compete for the same resource, leading
to performance degradation. Analyzing stack
traces helps pinpoint which threads are causing
contention and why.

 Deadlocks: A special form of thread contention
where two or more threads are waiting on each
other to release resources, causing the
application to hang. Identifying deadlocks
involves analyzing circular waits between
threads.

VII. HEAP DUMP ANALYSIS

Heap dumps are critical for understanding memory
allocation within the JVM and identifying objects
that are consuming excessive resources.

Analyzing heap dumps allows developers to detect
memory leaks, optimize garbage collection
performance, and fine-tune JVM memory
management settings.

1. Heap Dump Components
Heap dumps contain detailed information about
the memory state of a Java application, including:
 All Objects: Shows every object in the heap at

the time of the dump, including class fields,
primitive values, and references to other
objects.

 Garbage Collection Roots: Objects that are
kept alive by the JVM, such as active threads,
static variables, and objects in use by native
code.

 Thread Stacks and Local Variables: Includes
the call stacks of threads at the moment of the
dump and information about local objects
referenced within those stacks.

2. Key Concepts in Heap Dump Analysis
Shallow vs. Retained Heap
 Shallow Heap: The amount of memory

consumed by a single object.
 Retained Heap: The total amount of memory

that would be freed if the object were garbage
collected, including all objects directly or
indirectly referenced by it.

 Dominator Trees: A representation of the
largest objects in the heap and their reference
chains, helping to pinpoint major memory
consumers.

 Leak Suspects: Identified objects or sets of
objects that are unusually large and may
indicate a memory leak.

 Object Query Language (OQL): A query
language similar to SQL, used to query heap
dumps to find specific objects or memory
patterns.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

8

3. Tools for Heap Dump Analysis
Heap dumps are critical for diagnosing memory-
related issues, capturing a complete snapshot of
the heap memory at a particular moment. Heap
dumps can be collected manually or configured to
trigger automatically under specific conditions.

Key Tools and Methods
 jmap: The jmap command is used to generate

heap dumps from running Java processes. It
provides options to format the dump for
analysis and is the most commonly used tool
for manual heap dump collection.

 JVisualVM: Offers a graphical interface for
heap dump collection and basic analysis,
allowing users to capture and review memory
snapshots directly.

 Eclipse Memory Analyzer (MAT): A more
advanced tool specifically designed for heap
dump analysis, providing features like leak
suspect reports and memory usage graphs.

Automatic Collection
 Heap dumps can be automatically generated

when the JVM encounters an out-of-memory
error using the -
XX:+HeapDumpOnOutOfMemoryError flag.
This setting ensures that valuable diagnostic
information is captured when memory issues
occur.

4. Common Heap Dump Analysis Techniques
 Identifying Memory Leaks: Focus on objects

with large retained heaps and paths to GC
roots that prevent garbage collection.

 Analyzing Garbage Collection Performance:
Review the distribution of objects across
different generations and assess whether
garbage collection is effectively cleaning up
unused objects.

 Comparing Heap Dumps: By comparing
multiple heap dumps over time, you can track
memory growth patterns and identify objects
that consistently increase in number.

VIII. BEST PRACTICES

To maximize the effectiveness of JVM dump
analysis, it's important to follow best practices in
both the collection and interpretation of dumps.
These best practices ensure that dumps are
collected efficiently and analyzed accurately,
leading to quicker and more precise diagnostics.

1. Automated Dump Triggers
Automating the collection of dumps during critical
conditions helps capture the state of the JVM when
issues occur without requiring manual intervention.
 Configure JVM Flags: Use flags like -

XX:+PrintGCDetails, -
XX:+HeapDumpOnOutOfMemoryError, and -
XX:+PrintConcurrentLocks to automatically
capture dumps during garbage collection
events, memory errors, or thread contentions.

 Set Alerts: Integrate monitoring tools like
Prometheus or Datadog to set alerts that
trigger dump collection when performance
metrics exceed predefined thresholds.

2. Enhancing Dump Readability
Proper configuration and collection techniques can
enhance the readability and interpretability of
dumps, making analysis easier and more effective.
 Use Readable Formats: Ensure dumps are

collected in formats that can be easily
interpreted by analysis tools. For heap dumps,
use HPROF format, which is compatible with
tools like Eclipse MAT.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

9

 Filter Non-Critical Threads: Focus on
application threads rather than internal JVM
threads during thread dump analysis. This
reduces noise and highlights the most relevant
data.

3. Documentation and Knowledge Sharing
Recording analysis outcomes and sharing insights
with the team helps build a knowledge base for
future diagnostics.
 Document Findings: Maintain detailed records

of the findings from each dump analysis,
including identified issues and the actions
taken to resolve them.

 Collaborative Tools: Use collaborative tools
like Confluence or GitHub to share analysis
results, best practices, and diagnostic tips with
the development and operations teams.

IX. COMMON CHALLENGES AND

MITIGATION STRATEGIES

While JVM dump analysis is invaluable, it comes
with several challenges that can complicate the
diagnostic process.

Understanding these challenges and implementing
mitigation strategies can improve the efficiency and
accuracy of dump analysis.

1. Large Data Volumes
Challenge: Dumps, especially heap dumps, can be
very large, consuming significant disk space and
requiring substantial processing power to analyze.
Mitigation:
 Use Sampling Techniques: Analyze

representative samples of data rather than the
entire dump, focusing on the most critical
areas.

 Optimize Collection Settings: Configure the
JVM to collect dumps selectively, targeting
specific threads, objects, or conditions to
minimize the amount of data captured.

2. Performance Overhead
Challenge: Collecting dumps, particularly heap
dumps, can introduce performance overhead,

slowing down the application, especially in
production environments. Mitigation:
 Schedule Collection during Low-Traffic

Periods: If possible, schedule dump collection
during maintenance windows or low- traffic
times to reduce the impact on users.

 Use Remote Agents: Employ remote service
agents like jstatd to offload some of the
collection work, minimizing direct impact on
the JVM.

3. Accurate Interpretation of Data
Challenge: Misinterpreting dump data can lead to
incorrect conclusions, resulting in ineffective
troubleshooting efforts. Mitigation:
 Cross-Reference Findings: Always cross-check

dump analysis results with other performance
logs, monitoring data, and historical trends to
validate insights.

 Engage Expertise: When dealing with complex
issues, engage experienced developers or JVM
specialists who can provide deeper insights and
help avoid common pitfalls in interpretation.

X. CASE STUDIES

Real-world case studies highlight the effectiveness
of JVM dump analysis in solving critical
performance and stability issues.
These examples provide practical insights into how
dump analysis can be applied to diagnose and
resolve complex problems.

1. Case Study 1: Resolving a Memory Leak in a
High- Transaction Application
Scenario: A financial services application
experienced intermittent out-of-memory errors
during peak transaction periods. Initial monitoring
showed abnormal heap growth but did not reveal
the specific cause. Solution: A heap dump was
collected during peak usage and analyzed using
Eclipse MAT. The analysis identified a caching
mechanism that was retaining objects longer than
necessary, leading to excessive memory
consumption. Outcome: Modifications to the
caching algorithm introduced time-based eviction
policies, which reduced the retained heap size by
40% and eliminated the out- of-memory errors.

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

10

2. Case Study 2: Addressing Performance
Bottlenecks in a Web Application
Scenario: An e-commerce platform faced
significant performance degradation during flash
sales, with response times slowing dramatically.
Thread dumps were collected during these events
to investigate the issue. Solution: Analysis of the
thread dumps revealed multiple threads in
BLOCKED state, waiting for database connections
due to high contention. Optimizing database
connection pooling and adjusting synchronization
in the application code reduced contention points.
Outcome: Post-optimization, response times
improved by 30%, and the application was able to
handle peak loads more efficiently without
significant performance drops.

3. Case Study 3: Diagnosing Crash Issues in a
Distributed Microservices Architecture
Scenario: A distributed system comprising multiple
microservices frequently encountered random
crashes, disrupting overall service availability. Core
dumps were collected at the time of each crash for
in-depth analysis. Solution: Core dump analysis
revealed that certain microservices were accessing
released resources, leading to segmentation faults.
A thorough code review identified incorrect
reference handling, which was corrected to
implement more stringent resource management
policies. Outcome: The changes improved system
stability, with no further crashes observed in
subsequent testing and production environments.

XI. TOOLS AND UTILITIES FOR JVM
MONITORING

Effective JVM dump analysis is complemented by
using robust monitoring and profiling tools that
provide real-time insights into application
performance, resource usage, and system health.
These tools are essential for proactively detecting
issues, collecting diagnostic data, and performing
in-depth analysis.

1. Built-in Tools
Several built-in tools come with the JDK, offering
various features for monitoring and diagnosing
JVM performance.

 JVisualVM: A powerful monitoring,
troubleshooting, and profiling tool that comes
with the JDK. JVisualVM provides a graphical
interface for viewing JVM metrics, collecting
heap and thread dumps, and performing
lightweight profiling of Java applications. It is
ideal for real-time monitoring and basic
analysis.

 Java Mission Control (JMC): JMC is an
advanced tool that provides detailed insights
into JVM performance through low- overhead
monitoring and diagnostic features. It captures
detailed event data, including thread activity,
garbage collection behavior, and application
performance metrics, making it invaluable for
in-depth performance tuning.

 JConsole: A basic monitoring tool included
with the JDK, JConsole provides a simple way to
connect to running Java applications, view
performance metrics, and perform rudimentary
diagnostics. It’s useful for quick checks and
basic troubleshooting but lacks the advanced
features of JVisualVM and JMC.

 JStack, JMap, and JCmd: Command-line
utilities (jstack for thread dumps, jmap for heap
dumps, and jcmd for a variety of diagnostics)
are indispensable for quick, on-demand dump
collection and JVM state inspection. These tools
are particularly useful for remote diagnostics
and scripting automated monitoring tasks.

2. Third-Party Tools
Third-party monitoring and profiling tools often
provide enhanced capabilities and integration
features that go beyond what is available in the
JDK.
 YourKit Profiler: YourKit is a powerful profiler

for Java applications that offers detailed
analysis of CPU and memory usage, thread
behavior, and garbage collection performance.
It provides sophisticated visualization tools to
help developers identify performance
bottlenecks and optimize application
performance.

 AppDynamics: A comprehensive application
performance monitoring (APM) solution that
integrates JVM monitoring into broader system
observability. AppDynamics provides detailed

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

11

metrics on JVM performance, automatic
anomaly detection, and seamless integration
with other monitoring tools.

 New Relic: Another leading APM tool, New
Relic offers robust JVM monitoring features,
including heap and thread analysis, real-time
performance dashboards, and automated
alerts. Its integration with cloud services and
DevOps pipelines makes it ideal for modern
microservices architectures.

 Eclipse Memory Analyzer (MAT): Specifically
designed for heap dump analysis, Eclipse MAT
excels in identifying memory leaks, analyzing
object retention, and optimizing memory
usage. Its powerful query language and
automatic leak suspect reports provide valuable
insights into JVM memory behavior.

3. Remote Monitoring and Diagnostics
Remote monitoring tools allow JVMs to be
monitored and diagnosed without requiring direct
access to the host system, making them ideal for
cloud-based and distributed environments.
 Jstatd: A remote monitoring daemon that

allows tools like JVisualVM to connect to JVMs
running on different hosts, facilitating remote
diagnostics.

 Jsadebugd: A service agent for attaching to
remote JVMs, enabling dump collection and
analysis from systems without direct console
access.

XII. WALL PAPER

Water Sourc

es Result

XIII. FUTURE TRENDS

As Java continues to evolve, so do the tools and
techniques used for JVM dump analysis. Emerging
trends in this field focus on enhancing diagnostics,
integrating with cloud-native environments, and
automating the analysis process.

1. Enhanced Diagnostic Tools
Recent updates to diagnostic tools like JMC and
JVisualVM have introduced more granular data
collection, lower overhead monitoring, and
improved user interfaces, making dump analysis
more accessible and effective.

Event-Driven Analysis
Modern tools are moving towards event-driven
analysis, capturing more detailed events like thread
state changes, memory allocation peaks, and GC
pauses. This helps in pinpointing issues more
precisely without requiring frequent manual dump
collection.

Integrated Dashboards
Tools now offer integrated dashboards that
combine metrics, logs, and dumps, providing a
unified view of JVM health. This reduces the need
to juggle multiple tools and data sources during
diagnostics.

2. Cloud-Native and Containerized
Environments
The shift towards cloud-native architectures and
containerization has introduced new challenges and
opportunities for JVM dump analysis. Traditional
dump collection methods may not work seamlessly
in containers, requiring adaptations.

Sidecar Patterns
Using sidecar containers to collect and analyze
dumps in Kubernetes environments allows
monitoring tools to be decoupled from the main
application, improving observability and reducing
overhead.

Serverless and Microservices
Dump analysis in serverless environments is
evolving to support lightweight and distributed

 RamaKrishna Manchana. International Journal of Science, Engineering and Technology,
 2018, 6:2

12

diagnostics, often requiring tailored solutions for
short-lived functions and highly distributed
microservices.

XIV. CONCLUSION

JVM dump analysis is a critical practice for
diagnosing and resolving performance, memory,
and stability issues in Java applications. By
leveraging the detailed data captured in core,
thread, and heap dumps, developers and system
administrators can gain invaluable insights into the
inner workings of their applications, leading to
more effective troubleshooting and optimization.
This paper has covered the essential types of JVM
dumps, their purposes, collection methods, and
detailed analysis techniques, along with best
practices and common challenges. It also
highlighted the tools available for monitoring and
profiling Java applications, demonstrating how they
can be used to enhance diagnostic capabilities.

Looking ahead, the integration of automated
analysis, cloud-native adaptations, and AI-driven
insights will continue to evolve the landscape of
JVM diagnostics, making it easier for teams to
maintain high performance and reliability in
increasingly complex Java ecosystems.

REFERENCES

1. Oracle Java Documentation: Detailed guides on

Java tools and diagnostic utilities. Available at:
Oracle Java Tools

2. Java Mission Control User Guide: An overview
of Java Mission Control features and usage for
JVM diagnostics. Available at: Java Mission
Control

3. Eclipse Memory Analyzer (MAT):
Comprehensive tool for analyzing heap dumps
and identifying memory leaks. Available at:
Eclipse MAT

4. JVisualVM Documentation: Official guide for
using JVisualVM for monitoring and
troubleshooting Java applications. Available at:
JVisualVM

5. YourKit Profiler: A powerful Java profiler with
in-depth features for JVM analysis. Available at:
YourKit

6. AppDynamics Java Monitoring: A guide to
integrating AppDynamics for monitoring Java
applications. Available at: AppDynamics

7. New Relic Java Agent: Best practices for
monitoring JVMs using New Relic. Available at:
New Relic

