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I. INTRODUCTION 
 

DNA microarray can be explained as microscopic 

DNA spots contained to particular solid areas. Large 

amount of genes expression levels or rates could be 

measured in this way. 

 

Phenotype is an organism‟s observable character 

istics/traits such as morphology; biochemical, 

physiological properties, and a phenotype mostly get 

influences of environmental factors or from 

expression of an organism‟s genes. The variation in 

phenotypes could be noted as a prerequisite for 

evolution by natural selection, genetic structure of an  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

organism could be affected by the contribution of 

phenotype. Phenomena could be referred to 

collection of traits and phenomics as the study for 

such collection. The phenotype structure could be 

studied with many efficient algorithms. Although 

there exit many methods, these methods lack in 

scalability, robustness, time and computational 

complexity.  

 

Maximal phenotype alteration, an efficient method 

with suboptimal policies is introduced to overcome 

these problems. The G* sequence model with the 

combination of the phenotype alteration technique 

and policies makes the method more efficient and 

effective. The method will be able to work faster by 

Abstract- Data mining with microarray technologies can be used for the extracting hidden predictive 

information and are enabled to continuously monitor the expression rates of all genes. Discovering 

and studying phenotype structures have become an important problem in the field of microarray data 

analysis. There are mainly two goals 1) various samples related to various phenotypes such as normal 

or disease are to be found. 2) For various groups of samples, find the signature or representative 

expression pattern that will differentiate one group from others. There are several methods proposed, 

however, some common drawbacks could be identified such as the signatures selected can have a 

large amount of genes with very low discriminative power. In this paper, the g*-sequence model is 

improved and updated to address the limitations thereby expression values which are ordered among 

genes can be utilized profitably, the proposed sequence model could be seen more robust to noise 

and allows to find the signatures with higher discriminative power using very less genes. An efficient 

algorithm, Finder with markovian policies is developed, which contains three steps: 1) trivial g* 

sequences identifying, 2) discovering phenotype structure, and 3) refinement. To further improve 

efficiency effective pruning is carried out. Real genes and synthetic gene sets could be used to 

evaluate the performance of finder with markovian policies. The results proves that the approach 

could be used for phenotype structure discovery with high accuracy and detects signatures with high 

discriminative power, the orders of magnitude is faster than other alternatives 
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several orders of magnitude compared to other 

algorithms. Datasets such as real and synthetic could 

be used for the study of discovering phenotype 

structures. 

 

RELATED WORKS 

 
Mohammad Mahdi R describes the gene 

interactions modelled using gene regulatory 

networks and thus the effects of intervention and its 

strategies are studied and derived, The phenotype 

are characterized by long run behaviour (steady state 

distribution) of the network, two control approaches 

which are considered to be external are used to shift 

the steady-state mass of a GRN: user-defined cost 

function for which desirable shift of the steady-state 

mass is a by-product, heuristics to design a greedy 

algorithm, but neither of these approach provides an 

optimal  control policy. Gene regulatory network are 

important part of translational medicine, whose 

ultimate aim is to develop solutions on disruption or 

mitigation of aberrant gene function contributing to  

Pathology of a disease, two basic intervention 

approaches are used in context of probability 

Boolean networks, external control and structural 

intervention, according to the value flipping of a 

specific or possibly (more than one) called control 

gene an external defined, finite – state markov  chain 

defines dynamic behaviour of PBN.  

 

Synthetic networks with seven genes. For shifting 

steady – state mass from undesirable to desirable 

states a linear programming approach is used, for 

unconstrained and constrained optimization basic 

linear programming structure is used, the amount of 

mass that may be shifted to „ambiguous‟ states 

depend on constraints on the optimization limit, and 

clinically significant subtypes of cancer. There were 

various steps taken to perform necessary operations 

.The first method and step taken was to construct a 

specialized DNA array, in this method a specialized 

lymph chip is designed by selecting genes that are 

preferentially expressed in lymphoid cells and genes 

with known or suspected roles in processes 

important in immunology or cancer, after this the 

analysis of gene expression in lymphoid malignancies 

is done, the microarrays is used  to characterize gene 

expression patterns in the three most prevalent adult 

lymphoid malignancies: DLBCL,FL and CLL.  

 

A hierarchical clustering algorithm is used to group 

genes on the basis of similarity in the pattern with 

which their expression varied over all samples. The 

same clustering method is used to group tumour 

and cell samples on the basis of similarities in their 

expression of these genes. The data are in matrix 

format, with each row representing all the 

hybridization results for a single cDNA element of 

the array, and each column representing the 

measured expression levels for all genes in a single 

sample.  

 

To visualize the results, the expression level of each 

gene (relative to its median expression level across 

all samples) is represented by a colour, with red 

representing expression greater than the mean, 

green representing expression less than the mean, 

and the colour intensity representing the magnitude 

of the deviation from the mean. 

 

The next step is to identify the tumour phenotypes 

with gene expression patterns, once this process is 

completed the discovery of DLBCL subtype is carried, 

the structure of the hierarchical dendrogram 

indicates the gene expression patterns in DLBCLs 

might be inhomogeneous. Three branches of the 

dendrogram captured most of the DLBCLs with only 

three outlying samples. The position of any given 

DLBCL sample in the dendrogram is determined in a 

complicated fashion by the influences of several 

distinct biological themes that are rejected in the 

expression pattern.  

 

The search excluded genes that were readily 

assigned to the proliferation, T-cell and lymph-node 

signatures in order to focus attention on more subtle 

intrinsic molecular features of this group of tumours. 

Hierarchical clustering is used to reorder the set of 

2,984 genes while maintaining the order of the 

DLBCL cases, as is evident a cluster of genes could be 

recognized on the basis of their elevated expression 

in the activated B-like DLBCLs, as compared with GC 

B-like DLBCLs.  

 

It is important to note that considerable gene 

expression heterogeneity exists within each 

subgroup and that no single gene in either of these 

large clusters was absolutely correlated in expression 

with the DLBCL subgroup taxonomy. Rather, patients 

assigned by this method to either DLBCL subgroup 

shared a large gene expression program that 

distinguished them from the other subgroup. The 

final step defines the prognostic categories by DLBCL 

gene expression subgroups. A clinical indicator of 
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prognosis, the International Prognostic Indicator (IPI), 

is used to define prognostic subgroups in DLBCL. The 

indicator takes into account the patient's age, 

performance status, and the extent and location of 

disease. As suspected, within the patient population 

a low IPI score (0±2) identified patients with better 

overall survival as compared with patients with a 

high IPI score (3±5). 

 

After determining whether molecular definition of 

DLBCL subgroups could add to the prognostic value 

of this clinical indicator of prognosis. Considering 

only patients with low clinical risk, as judged by the 

IPI, patients in the activated B-like DLBCL group had 

a distinctly worse overall survival than patients in the 

GC B-like DLBCL group (P, 0.05). Thus, the molecular 

dissection of DLBCL by gene expression profiling and 

the IPI apparently identify different features of these 

patients that influence their survival. The genomic-

scale view of gene expression in cancer provides a 

unique perspective on the development of new 

cancer therapeutics that could be based on a 

molecular understanding of the cancer phenotype.  

 

The study shows that the two DLBCL subgroups 

differentially expressed entire transcriptional 

modules composed of hundreds of genes, many of 

which could be expected to contribute to the 

malignant behavior of the tumor. This observation 

suggests that successful new therapeutics might be 

aimed at the upstream signal-transuding molecules 

whose constitutive activity in these lymphomas leads 

to expression of pathological transcriptional 

programs.  

 

Chun Tang [2] proposes a new model called 

empirical sample pattern detection (ESPD) to 

delineate pattern quality with informative genes. By 

integrating statistical metrics, data mining and 

machine learning techniques, this model dynamically 

measures and manipulates the relationship between 

samples and genes while conducting an iterative 

detection of informative space and the empirical 

pattern. The problem of unsupervised sample pattern 

detection by developing a novel analysis model 

called empirical pattern detection (ESPD) which 

includes a series of statistics-based metrics and 

iterative adjustment.  

 

A formalized problem statement of ESPD of sparse 

high-dimensional datasets is proposed. Major 

differences from traditional clustering or recent 

subspace clustering problems are elaborated, a 

series of statistics-based metrics incorporated in 

unsupervised empirical pattern discovery are 

introduced. These metrics delineate local pattern 

qualities to coordinate between sample pattern 

discovery and informative genes selection, an 

iterative adjustment algorithm is presented to 

approach the optimal solution.  

 

The method dynamically manipulates the 

relationship between samples and genes while 

conducting an iterative adjustment to approximate 

the informative space and the empirical pattern 

simultaneously, an extensive experimental evaluation 

over real datasets is presented. It shows that our 

method is both effective and efficient and 

outperforms the existing methods.  

 

Given a data matrix and the number of samples‟ 

phenotypes, the goal is to find mutually exclusive 

groups of the samples matching their empirical 

phenotypes and to find the set of genes which 

manifests the meaningful pattern. 

 

P. M. Booma, S. Prabhakaran, and R. 

Dhanalakshmi [6] proposed a model to monitor 

higher rate of expression levels between genes. The 

biological association between genes is measured 

simultaneously using proximity measure of improved 

Pearson‟s correlation (PCPHC). Experimental studies 

show that the PCPHC model outperforms all the 

current models, and, importantly, it leads to the 

discovery of more quality patterns. The experimental 

result of PCPHC model attains the improved gene 

expressional data, minimal execution time. 

 

Shuzhong Zhang, Kun Wang, Bilian Chen, and 

Xiuzhen Huang [18] proposed a framework to study 

the co-clustering of gene expression data. This 

framework is based on a generic tensor optimization 

model and an optimization method termed 

Maximum Block Improvement (MBI). Not only can 

this framework be applied for co-clustering gene 

expression data with genes expressed at different 

conditions represented in 2D matrices, but it can also 

be readily applied for co-clustering more complex 

high-dimensional gene expression data with genes 

expressed at different tissues, different development 

stages, different time points, different stimulations, 

etc. It is flexible that it poses no difficulty at all to 

incorporate a variety of clustering quality 

measurements. 
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R. Das, D. K. Bhattacharyya, and J. K. Kalita [20] 

were proposed a system which presents two 

clustering methods: the first one uses a density-

based approach (DGC) and the second one uses a 

frequent item set mining approach (FINN). The 

clusters obtained by DGC have been validated using 

several cluster validity measures over six microarray 

data sets. The regulation based cluster expansion 

also overcomes the problem of maintaining the 

pattern information usually linked with the different 

clustering approaches due to traditional similarity 

measures.  

 

In FINN, the frequent item set generation step gives 

the innermost or the fine clusters from the gene 

expression data and the shared neighbour clustering 

approach gives the final clusters in the dataset. Both 

the methods use a novel dissimilarity measure 

discussed in the work. 

 

Geetha. T, Michael Arock [17] their work presents 

enhanced hierarchical clustering algorithm for gene 

expression data sets. In the previous works, database 

scanning and distance matrix calculation are needed 

for all iterations. This method reads the database and 

finds distance matrix only once, which reduces the 

amount of time. Also, our method requires the 

minimum space, as the lower triangular distance 

matrix can be represented in single dimensional 

array, even when large databases are used. And, we 

represent the cluster results as a binary tree which 

gives clear grouping. Cut distance is used to find the 

number of clusters and clustered objects. 

 

Kwon Moo Lee and Ju Han Kim [21] proposed the 

heuristic global optimization method, Deterministic 

Annealing (DA), to the same clustering method. In 

DA approach, the cost function is locally minimized 

subject to a constraint on a given randomness 

(Shannon entropy), controlled by „temperature‟ that 

is gradually lowered. As the temperature goes slowly 

down to zero, obtain the best binary partitioning by 

the analogy of statistical physics in annealing 

process.  

 

Even though global optimization approach produces 

the high quality clustering results, in general, it 

requires much computational cost. But, since the 

speed of DA algorithm depends on that of the local 

optimizer, if employ high performance local 

optimization technique, the computation cost can be 

substantially reduced. It was also demonstrated that 

error-prone objects can be identified by monitoring 

the annealing process, which can be applied to 

increase the quality of clustering analysis. Here used 

the standard multidimensional local optimization 

technique which incorporates one dimensional line 

search method. 

 

III. MAXIMAL PHENOTYPE ALTERATION 

 
To improve efficiency in phenotype structure 

discovery (Yuhai Zhao. 2014) and to reduce the 

computation cost of the system, a new scheme called 

“maximal phenotype alteration” is proposed (Edward 

R. 2013).  

 

From this proposed system the performance of 

discovery of the phenotype structure is improved. An 

intervention policy that maximally shifts the long run 

probability mass of undesirable states to desirable 

states. This objective function essentially concerns 

the long-run behavior of the occupation measures 

marginalized over the actions. Thus, policy space to 

MS (Markov stationary policies) can be limited 

without loss of generality.  

 

Let A = A (j) = {0, 1} for all j   S. If policy   MS, then 

the amount of shift in the aggregated probability of 

undesirable states for a probabilistic Boolean 

networks (PBNs) controlled under is defined as;  

 

∆𝜋𝑢 𝜇 =   𝜋𝑗

𝑗  ∈ 𝑢

−  𝜋𝑗

𝑗  ∈ 𝑢

(𝜇) 

 

Where 𝝅 and 𝝅(𝝁) are the unique vectors of the 

invariant probability measure for the Markov chains 

governed under the (transition probability matrix) 

TPMs P and Q(𝜇), respectively. In general, -1 ≤ 𝜋𝑢 (𝜇) 

≤ 1 and the goal is to maximize it. A block (or sub 

matrix) is the basic element of a phenotype structure, 

which consists of a subset of samples and the 

corresponding p-signature.  

 

Thus, phenotype structure discovery can be naturally 

divided into the following three components: 

candidate p-signatures generation, block derivation 

from candidate p-signatures, and quality test of 

block combinations. By using this maximal 

phenotype alteration process, we can obtain the 

higher efficiency in phenotype structure discovery 

and as well as we can reduce the computational 

overhead of the system. 
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IV. ARCHITECTURE 

 

 
Fig 1. Architecture for learning phenotype structure 

discovery using maximal phenotype alteration. 

 

V. PERFORMANCE METRICS AND RESULT 

ANALYSIS 

 
The performance offered by existing system and the 

proposed system can be compared by evaluating the 

parameters such as accuracy, error rate, time 

complexity and number of selected genes, Based  on 

the comparison and the results from the experiment 

show that the proposed approach works better than 

the existing system. 

 

To evaluate robustness to noise, we artificially added 

noise to some data sets. Since we did not know a 

priori the amount of noise originally present in each 

data set, as a first step, we chose four data sets such 

as breast cancer dataset, yeast dataset, diabetes 

dataset and tumor dataset in which differences 

among the performances of the distances were 

minimal, i.e., data sets in which different distances 

provided the closest results without the presence of 

noise.  

 

With this selection, we intended to provide a fair 

starting point and comparison among the distances 

as the noise is added. 

1. Accuracy: Accuracy can be calculated from 

formula given as follows: 

Accuracy = (TP+TN)/ (TP+TN+FP+FN) 

Where, TP (True Positive): If the outcome from a 

prediction is p and the actual value is also p, then it 

is called a true positive (TP). 

 

2. TN (True Negative): A true negative (TN) has 

occurred when both the prediction outcome and the 

actual value are n in the number of input data. 

 

3. FP (False Positive): If the outcome from a 

prediction is p and the actual value is n then it is said 

to be a false positive (FP). 

 

4. FN (False Negative): False negative (FN) is when 

the prediction outcome is n while the actual value is 

p. 

 

 
Fig 2.  Accuracy performance comparison with noise 

in dataset. 

 

In the above graph, we are comparing the accuracy 

rate of the proposed system (with noise) with the 

existing technique (with noise). For this experiment, 

we are adding the noise to the dataset such that 

breast cancer dataset, yeast dataset, diabetes dataset 

and tumor dataset. Accuracy rate is mathematically 

calculated by using formula. As usual in the graph X-

axis will be number of proximity measures methods 

such as existing system i.e., few datasets and 

proposed system such as many datasets and Y-axis 

will be accuracy rate.  

 

From the graph we can easily understand that the 

proposed system has higher accuracy rate which is 

taken the output result. From view of this accuracy 

comparison graph we obtain conclude as the 
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proposed algorithm has more effective in accuracy 

rate performance compare to existing algorithms. 

 

5. Error Rate: Error rate can be calculated from 

formula given as follows 

 

Error Rate = (FP+FN)/ (TP+TN+FP+FN) 

 
Fig 3. Error rate performance comparison with noise 

in dataset. 

 

In the above graph, we are comparing the error rate 

of the proposed system (with noise) with the existing 

technique (with noise). For this experiment, we are 

adding the noise to the dataset such that breast 

cancer dataset, yeast dataset, diabetes dataset and 

tumor dataset. Error rate is mathematically calculated 

by using formula. As usual in the graph X-axis will be 

number of methods such as existing system i.e., few 

datasets and proposed system such as many 

datasets and Y-axis will be error rate.  

 

From the graph we can easily understand that the 

proposed system has very low error rate which is 

taken the output result. From view of this error 

comparison graph we obtain conclude as the 

proposed algorithm has more effective in error rate 

performance compare to existing algorithms. 

 

VI. CONCLUSION 

 
The proposed system is introducing the novel 

approach of Maximal phenotype alteration to the 

model of phenotype structure discovery. The 

proposed system improves the effectiveness of 

phenotype structure discovery process and it well 

reduced the cost of computation of the system. The 

proposed system has high effectiveness than other 

existing systems.  

The proposed phenotype structure discovery 

approach is used to discover the statistical significant 

phenotype structures with higher accuracy and fewer 

genes. Extensive experimental results on real and 

synthetic data sets show that the method 

dramatically improves the accuracy of the discovered 

phenotype structure (in terms of statistical and 

biological significance) while using much less genes 

compared to the existing methods. 
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