
Vikas Kharkwal, 2021, 9:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2021 Vikas Kharkwal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Mask Detection Using Convolutional

Neural Network
Vikas Kharkwal, Tenzin Jamtsho, Brajehdra Kumar Sharma, Yogeshwar Maithani

Computer Science and Engineering,

Tulas Institute, Dehradun,,Uttarakhand

vikas.201704075@tulas.edu.in, tenzin.201704078@tulas.edu.in, brajehdra.sharma@tulas.edu.in,

yogeshwar.201704069@tulas.edu.in

I. INTRODUCTION

The year 2020 has been really tough on mankind.

With the rapid spread of COVID-19, it reached a

pandemic status, affecting millions of people in each

and every part of the world. It forced people to make

many lifestyle changes like staying at home,

observing social distancing, sterilizing the

surrounding and the most important and

controversial lifestyle change, use of face masks. It

has been proven that wearing a mask prevents the

spread of the disease considerably, but scepticism

spread far and wide.

It was mainly due to pseudoscience and fake news

peddlers spreading false information about the virus

as well human body on how it reacts to wearing

masks. Even if there are scientists, doctors and health

workers vouching for face masks being a great

source of prevention of this disease, there were still

many people making cases against wearing of face

masks citing pseudoscientific articles.

Though we cannot stop people from believing in

pseudo- science and fake news, we can however

enforce wearing of masks in public spaces to slow

the spread of this deadly disease. This might be hard

in some cases as people tend to wear masks only

when they see someone monitoring them. To

monitor the people to ensure proper following of

rules without making it obvious that they are being

monitored, a method needed to be developed.

One that leads to least amount of exposure to

workers working in these tough times to enforce the

rules and regulations, especially regarding the

wearing of face mask To enforce the rule of mask

wearing, it was not possible to hire a large number of

people just to check if the people are wearing masks

in public spaces. This is where our project was

envisioned.

II. METHODOLOGY

1. Dataset:

The dataset we used is from Kaggle by the user

Larxel. The dataset contains 853 images with multiple

faces in many images. We also manually extracted

images from Google search to get good quality

images for our data set. We used validation split to

split the data into training and validation data. The

data was split in the ratio of 0.7:0.3, i.e., 70 percent of

the data was used for training the model and 30

percent was reserved to validate the model after

Abstract- The world is going through a tough time as we are in the middle of a pandemic caused by the

corona virus (SARS- CoV-2). The guidelines issued by the WHO indicate the use of face masks in public for

preventing the spread of the virus. The project aims to train a neural network to detect whether a person

is complying with the requirement for a mask. This tech can be applied in entrances of high traffic areas

such as metros and airports, which have the highest risk of transmission, to determine whether or not to

allow entrance. This will help officials to monitor the people while maintaining a safe distance and

preventing them from getting infected.

Keywords: - Face Mask Detection, Convolutional Neural Network, Data augmentation, Algorithm.

 Vikas Kharkwal. International Journal of Science, Engineering and Technology, 2021, 9:2

Page 2 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

training. The reserved data was unseen by the model

so it told us the accuracy of the working of the

model for unseen data.

2. Data Manipulation:

2.1 Image Libraries:

2.1.1 Pillow: Pillow is the Python Image Library

(PIL) for versions 3.x. It adds the functionality of

opening, manipulating and saving images in python.

We used the Image module of Pillow to open and

manipulate the images in Python. We extracted the

faces from the images using Pillow. The images

weren‟t converted to grayscale like many other

image processing models because it‟s hard to detect

faces behind a mask and we require skin color to

detect a face. The blob detection method of CV2 that

we aimed at using would require color data to

identify faces behind a mask using the skin tone of

the person.

2.1.2 CV2 (OpenCV): OpenCV is a library aimed at

real-time computer vision (it deals with how

computers understand digital images or videos). We

used CV2 of OpenCV library for Python to capture

live video feed from the webcam. The image was

saved as a constantly updating temporary file.

CV2 uses BGR colour space, which is converted to

RGB when the image is opened and manipulated

using Pillow. This helped us in maintaining

compatibility between training dataset and real-

world usage of the model because the images we

used to train the model were all in RGB colour space

due to it being the most popular colour space in

computing. This library was also used for blob

detection which is a method to identify regions in an

image that differ in properties, like brightness and

colour. This made it easier for our model to detect

faces behind masks.

2.2 NumPy:

We used NumPy to convert the images manipulated

using Pillow into a multidimensional array so that the

data can be understood by the computer. A

computer does not understand images as we

humans do. To make the computer understand the

images, we use NumPy to convert the RGB image

into a 3-dimensional array of h × w × d (h = height;

w = width; d = dimension). E.g., 255 ×255× 3 array of

an RGB image.

3. Core Library Used for Generating the Model

(Keras):

We used Keras library to generate our model. Keras

is a library in Python that provides an interface for

Artificial Neural networks. It acts as an interface for

the Tensor Flow library. It contains implementations

of commonly used neural-network building blocks

like layers, activation functions, optimizers, etc. and

make it easier to create machine learning models

without writing excessive neural network code.

III. ARCHITECTURE OF THE MODEL

We trained a CNN model with 3 layers of 8 nodes

each, no hidden dense layer and one bias node. The

code below is the model after removing the model

structure.

Fig 1. Code snippet showing the Sequential model.

A Sequential model is appropriate for a plain stack of

layers where each layer has exactly one input tensor.

 The first layer is a Convolution Layer of size 3 × 3.

This layer creates a convolution kernel that is

convolved with the layer input to produce a tensor

of outputs. If use bias is true, a bias vector is

created and added to the outputs. Finally, if

activation is not any, it is applied to the outputs as

well. Channels Last: Image data is represented in a

three-dimensional array where the last channel

represents the colour channels, e.g., [rows] [cols]

[channels] this layer uses the „ReLU‟ activation

function.

 The next layer performs a max pooling operation

on output of the previous layer. It down-samples

the input representation by taking the maximum

value over the window defined by pool size for

each dimension along the feature‟s axis. The

 Vikas Kharkwal. International Journal of Science, Engineering and Technology, 2021, 9:2

Page 3 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

window is shifted by strides in each dimension.

This layer has a pool size of (2 2).

 The resulting output when using”valid” padding

option has a shape (number of rows or columns)

of:

Output shape = ((input shape − pool size) + 1)

 The above-mentioned Convolution and Max

Pooling operations are done in steps so as to avoid

any feature loss. We have determined by

consecutive tests that our model works with most

accuracy with two additional steps of Convolution

and Max Pooling.

 The next layers flatten the 2D output of the previous

layer into a 1D array which can then be fed to a

Dense Layer.

 The last layer is a Dense Layer. Dense implements

the operation:

Output = activation (dot (input, kernel) + bias)

Where activation is the element-wise activation

function passed as the activation argument, kernel is

a weights matrix created by the layer, and bias is a

bias vector created by the layer (only applicable if

use bias is True). This layer uses the „sigmoid‟

activation function. This is our output layer.

IV. OPTIMIZATION OF MODEL

1. Optimizer/Gradient Descent Algorithm:

Adam is an adaptive learning rate optimization

algorithm that utilizes both momentum and scaling,

combining the benefits of RMS prop and SGD with

Momentum. The optimizer is designed to be

appropriate for non-stationary objectives and

problems with very noisy and/or sparse gradients [1].

The weight updates are performed as:

𝒘𝒕 = 𝒘𝒕−𝟏 − 𝜼
𝐦 𝒕

 𝐯 𝒕+∈

𝐦 𝒕=
𝒎𝒕

𝟏−𝜷𝟏
𝒕

𝐯 𝒕=
𝒗𝒕

𝟏−𝜷𝟐
𝒕

𝒎𝒕 = 𝜷𝟏𝒎𝒕−𝟏 + (𝟏 − 𝜷𝟏)𝒈𝒕

𝒗𝒕 = 𝜷𝟐𝒗𝒕−𝟏 + (𝟏 − 𝜷𝟐)𝒈𝒕
𝟐

η is the step size/learning rate, around 1e 3 in the

original paper. ϵ is a small number, typically 1e 8 or

1e 10, to prevent dividing by 0. β1 and β2 are

forgetting parameters, with typical values 0.9 and

0.99, respectively.

2. Activation Functions:

We considered using ReLU which outputs the

function itself if it is positive, but gives zero as output

if it is anything else. We also used sigmoid function

because it takes real values for input and outputs

another value between 0 and 1. It works better when

creating models for binary classification. We didn‟t

use tanh function as it gives output over a broader

range, i.e., −1 to 1, which is not ideal in our case.

2.1 ReLU: The rectified linear activation function or

ReLU for short is a piecewise linear function that will

output the input directly if it is positive, otherwise, it

will output zero. It has become the default activation

function for many types of neural networks because

a model that uses it is easier to train and often

achieves better performance. [3]

Fig 2. Graph of ReLU Activation Function [4].

2.2 Sigmoid Function:

𝑺𝒊𝒈𝒎𝒐𝒊𝒅 𝒙 =
𝟏

(𝟏 + 𝒆𝒙𝒑 −𝒙)

Applies the sigmoid activation function. For small

values (<5), sigmoid returns a value close to zero,

and for large values (> 5) the result of the function

gets close to 1.

Sigmoid is equivalent to a 2-element Soft Max,

where the second element is assumed to be zero.

The sigmoid function always returns a value between

0 and 1.

Thus, it is used for binary classifications; we don‟t use

tanh function which outputs between 1 and 1

because images don‟t have a negative value.

 Vikas Kharkwal. International Journal of Science, Engineering and Technology, 2021, 9:2

Page 4 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

Fig 3. Graph of Sigmoid Activation Function [5].

3. Loss Function:

3.1 Binary Cross-entropy: Also called Sigmoid

Cross- Entropy loss. It is a sigmoid activation plus a

Cross-Entropy loss. Unlike Soft Max loss it is

independent for each vector component (class),

meaning that the loss computed for every CNN

output vector component is not affected by other

component values.

That‟s why it is used for multi-label classification,

where the insight of an element belonging to a

certain class should not influence the decision for

another class. It‟s called Binary Cross-entropy Loss

because it sets up a binary classification problem

between C′=2 classes for every class in C, as

explained above.

So, when using this Loss, the formulation of Cross-

entropy Loss for binary problems is often used:

𝑪𝑬 = 𝒕𝒊 𝒍𝒐𝒈(𝒇 𝒔𝒊)

𝒊=𝟏

𝒄′ =𝟐

CE = −t1 log (f (s1)) − (1 − t1) log (1 − f (s1))

𝒇(𝒔)𝒊 =
𝟏

𝟏 + 𝒆−𝒔𝒊

3.2 Validation Loss: Validation loss is the most

important value to look at when optimizing the

model. Validation loss is the same metric as training

loss, i.e., cost function, but it is not used to update

the weights. It is a key factor in determining whether

a model is capable when dealing with data outside of

the training set. And the most important value to

have a consistent decline in as you train.

4. Tensor Board:

4.1 About Tensor Board: It is the visualization

toolkit of Tensor Flow. It is an extremely helpful tool

used when optimizing the model.

4.2 Approach: With the use of Tensor Board we can

compare multiple trained models at a time using the

method below. We consider the different possible

values for each of the following:

 Number of dense layers

 Number of convolution layers

 Number of nodes

Then we created arrays of the values and used

nested loops to train the model multiple times.

Fig 4. Code snippet for training models for

comparison.

The accuracy and loss from each model were

analyzed using Tensor Board and the model with

best trends in accuracy and loss was chosen.

Fig 5. Tensor Board to compare accuracy and loss of

trained models.

 Vikas Kharkwal. International Journal of Science, Engineering and Technology, 2021, 9:2

Page 5 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

5. Feature Map:

The feature map is the output of one filter applied to

the previous layer. A given filter is drawn across the

entire previous layer, moved one pixel at a time. Each

position results in activation of the neuron and the

output are collected in the feature map.

Convolutional Neural Networks look for features

such as straight lines, or cats. As such whenever you

spot those features-they get reported to the feature

map. A feature map helps gain insight on the CNN

when determining the right filter size pool size when

spooling.

Fig 6. Generated feature map of a face.

V. INFERENCE

We verified the working of the model on live video

feed using our webcam and found it to be working

as expected. The model works well as it gives Not

Wearing Mask as a response when you cover your

mouth with your hand or have uncovered your nose

while wearing a mask.

This is great as it can differentiate when someone is

using their hands to deceive the model or wear the

mask improperly. Some screenshots can be seen

below which show the working of the model. It also

identifies multiple people in the frame at the same

time. Below are some screenshots showing the

working of the model:

Fig 7. When not wearing a mask.

Fig 8. When wearing a mask.

Fig 9. When wearing mask improperly.

Fig 10. When covering mouth with hand.

1. Limitations:

The only limitation we faced was that of bad data.

The data was insufficient for masks worn incorrectly

which caused us to scrap that part of the project

entirely. However, after training, the model would

respond with Not Wearing Mask when the mask was

not covering the nose, so that part of the problem

was taken care of itself.

2. Future Expansion:

Major nations in the world made it mandatory to

wear masks in public. Whether it is in transport

stations, shopping malls or in markets, people are

required to wear masks. This should have been easy

but humans are rebellious and won‟t follow rules

easily. The model we created can be expanded to be

used in any public space using the CCTV footage as

the video feed. This will allow authorities to use

existing infrastructure with very little modification to

 Vikas Kharkwal. International Journal of Science, Engineering and Technology, 2021, 9:2

Page 6 of 6

International Journal of Science,
Engineering and Technology

An Open Access Journal

prevent unmasked people from entering the public

space and increasing the risk of contamination. The

authorities can be alerted in case someone without a

mask enters the premises of the public space.

VI. CONCLUSION

In this world that is crumbling over rising cases of

COVID- 19, using technology in any way to help

humanity is something a student of Computer

Science must aspire. The project we developed to

help the frontline workers to enforce rules which are

beneficial for safety of everyone can be of great use

and can help prevent the spread of the deadly

disease we are facing currently.

This project can be integrated with surveillance

systems in order for it to be useful in major public

spaces.

We used Pillow, NumPy, OpenCV, Tensor Flow Keras,

etc. to detect proper use of face masks by people in

public spaces. The model was trained and validated

with images from Kaggle and a few images which

were manually downloaded to have a quality data

set. The final testing of the finished model was done

using similar quality images as well as using the live

video feed from webcam of our device.

The model can easily detect multiple people in an

image or in the live video feed and detect whether

they are wearing masks. The model is well optimized

so it can be implemented in embedded systems. The

model can be used in public places like transport

stations, shopping malls, etc. to ensure people are

wearing proper masks without the need of extra

“eyes” in the authority, thus keeping risk of

contamination to the minimum.

REFERENCES

[1] Dataset-https://www.kaggle.com/andrewmvd/

face-mask-detection/, 02/11/2020.

[2] Diederik P. Kingma and Jimmy Ba (2014) „Adam:

A Method for Stochastic Optimization‟,

https://arXiv.org/abs/1412.6980

[3] Ian H. Witten, Eibe Frank, Mark A. Hall,

Christopher J. Pal (2017), „Chapter 10 - Deep

learning‟, Data Mining (Fourth Edition), Morgan

Kaufmann, pp 417-466

[4] https://machinelearningmastery.com/rectified-

linear-activation-function-fordeep-learning-

neural-networks/, 14/01/2021

[5] https://www.geeksforgeeks.org/implement-

sigmoid-function-using-numpy/, 19/01/2021

