
Hemanth Swamy, 2022, 9:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2022 Hemanth Swamy. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Software Quality Analysis in Edge Computing for

Distributed Devops Using ResNet Model
Hemanth Swamy

Senior Software Engineer

Motorola Solutions

I. INTRODUCTION

A philosophy and set of techniques known as

"DevOps" encompasses both development and

operations. Its primary goals are to increase

software quality, decrease software development

lifecycle, and remove obstacles to software

evolution. Development, Security, along with

Operations (DevSecOps) is an emerging version of

DevOps that aims to include security principles into

the process of DevOps. It was created in response

to the growing need for safe software products.

Software quality is often cited as an outcome of

DevOps implementation in literature. Although

there is some evidence that DevOps improves the

quality of goods, there is less detail about the

specific actions or best practices that do so [1].

Constant innovation is essential to meet the

aspirations of corporations operating in today's

industrial and market-driven business climate.

Programmers, testers, DevOps engineers, and

project managers are all going to be involved in

this. In order to properly account for the most

recent solutions, procedures, standards, and

methods, it is necessary to mix whole software

code, which is associated with the dispersion of

different directions [2]. Many QA groups now use

the software quality model as a framework for

analyzing software products and ensuring their

quality. For DevOps to operate, the CI/CD process

Abstract- The phrase "development operations" (DevOps) refers to a more modern trend in which several

disciplines work together to speed up and enhance the delivery of IT solutions that provide value to businesses.

The advantages of DevOps, such as faster development times, more stable environments, better teamwork, and

better communication, are attracting many software companies. Despite the importance of DevOps principles

for software firms, the management of these activities has received less attention in the literature. An efficient

framework for managing DevOps activities is our study's overarching goal. In order to find out how to execute

DevOps well, we ran an empirical research using the open-source HELENA2 dataset. In addition, we have

developed a model for forecasting for DevOps implementation using the RESNET prediction algorithm, which is

furthermore compared to machine learning models like SVM, ANN, and RF. Consequently, we determined that

checking system log files, automated tests, making sure that automated tests cover a lot of ground, and using a

continuous deployment plan are the most typical tasks. Additionally, the Extended Kalman Filter (EKF) is used

to assess the quality. This research gives us the green light to keep digging for answers on how to improve

quality of software in DevOps environments.

Keywords- Continuous Quality, DevOps, Feature Dependent, Software Quality, Edge and Machine Learning

Model

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

2

builds a pipeline, testing jobs are added to it, and

automating of testing is encouraged so that

products may be developed more efficiently.

However, traditional quality metrics like bug ratio

and test coverage rate have been employed by

most DevOps initiatives. The quality model allows

for the visualization and management of the

progress toward the released system's needed

quality by classifying the quality assured through

CI/CD pipeline testing according to quality

attributes [3]. There is a pressing need to identify

more effective development models due to the

rapid evolution of software engineering. DevOps

with its security-focused addition the goal of using

DevSecOps was to increase code dependability and

speed up the entire development cycle.

Nonetheless, security holes can still exist due to

infrastructure vulnerabilities and many third-party

libraries. In addition, standards and regulatory

compliance need thorough infrastructure hardening

and secure software [4, 5]. Improved software

efficiency, reliability, and quality may be achieved

via DevOps, a method that brings together

development and operations teams. During various

phases of software development, DevOps employs

a diverse collection of automation technologies [6,

7].

1. Contributions

In order to create high-quality products, software

development companies are now embracing

DevOps principles. Since the word "DevOps" has

not been defined, the concepts, procedures, and

measures used to evaluate its efficacy have evolved

significantly. If the DevOps methods are used

efficiently and successfully, various advantages of

DevOps may be obtained. The purpose of this

research was to catalog the DevOps methods that

help bring about a high degree of DevOps. The

HELENA2 dataset has been analyzed using a

qualitative and interpretative method. Using

degrees of characteristics, the ResNet model

classifies DevOps practices into three categories:

high, low, and medium. Each category is utilized to

determine the quality calculation. Companies that

consistently employ DevOps have a leg up when it

comes to reaching their objectives, according to the

quality score across all categories.

When contrasted with other models, our software

quality approach stands out because

 Features-level non-functional requirements

(such as deployability, containerization,

virtualization, and elastic service provisioning)

are defined, and non-functional requirements

related to DevOps are also supported. Quality

factors are operationalized using specified

measures, instruments, and applicable

constraints.

 Provides a collection of programming interfaces

that are language-neutral and can be

customized to fit typical DevOpstoolchains,

enabling the implementation of the quality

model.

Here is the structure of the paper: In Section 2, we

go over the basics of DevOps, the Edge OPS

architecture, and how to measure software quality.

The research model and technique used in the

study are described in Section 3. The data analysis,

findings, and suggestions are all reported in Section

4. In Section 5, we draw conclusions and summarize

the study on how DevOps might increase quality.

II. RELATED WORK

Investigating the DevOps processes that influence

software quality is the aim of the ongoing effort [8].

To do that, they combed through the literature for

references to software quality-related tasks. To

further investigate the chosen activities' validity,

authors examined specific instances of DevOps

deployments. Consequently, they determined that

checking system records, automating evaluations,

making sure that automated tests cover a lot of

ground, and using a continuous deployment plan

are the most typical tasks. Having development

progress measurements and making sure team

members have the necessary abilities are the less

common tasks. That research gives us the green

light to keep digging for answers on how to

improve quality of software in DevOps

environments. Presented a multi-level edge

computing–based distributed & anonymous data

collection (DaaC) platform in [9]. To reduce end-to-

end latency and packet loss, this system uses a

network of level-one device edges (LOEDs) to share

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

3

the collected data and boost quality of service. In

order to transfer data from LOEDs to servers in the

cloud, mobile sinks are used. The portable sinks are

safeguarded before data collecting begins by

registering using a level-two edge device. Requests

to acquire data from mobile sinks are protected

from prying eyes by using group-based signatures.

Our proposed approach enhances QoS via

dispersed data transfer, as shown experimentally. By

thinking about how to best deploy neural network

models onto the edge nodes, suggest a task model

offloading technique in [10]. Using the enhanced

ant colony method, a flexible task scheduling

method is also developed to optimize work

assignment in an adaptable way. They are the basis

of a distributed neural network-compatible

collaborative cloud-edge computing architecture.

The cloud and edge computing may operate

together in harmony thanks to the procedures

brought up by this architecture. The framework may

increase task accuracy, decrease energy

consumption, and delay, according to the

simulation findings. The paper suggests an edge-

computing-based method for detecting faults in

distributed power distribution, which can improve

power supply reliability, reduce power outages,

increase user satisfaction, and speed up processing

times for distribution faults [11]. The second part of

the paper lays out the foundation for using wavelet

transforms to identify signal singularities, and it

suggests a way to analyze power signal fault signals

using these techniques. By using wavelet transform

to its fullest potential in fault signal evaluation, it

not only overcomes the limitations of the

conventional Fourier transform approach but also

provides instances to back up its claims. An

assessment system based on the edge computing

CROSS index fault detection framework is provided,

taking into consideration the important needs of

edge computing such as agile connectivity,

business real-time, data efficiency, application

intelligence, security, and privacy protection. Work

together on projects, create and monitor project

deliverables such code in [12]. as well as monitor

the project artifacts' deployment and release

processes and build scripts. For administering your

IoT Edge installations, Azure DevOps is a good

option because of its support for containers and its

interaction with Docker. On top of that, there are

specialized processes for developing IoT Edges that

streamline the release and build procedures. Cloud

DevOps in Azure is a vast subject. Our emphasis in

this chapter will be on the processes and workflows

needed for developing and implementing Azure IoT

Edge applications, once we have established some

of the core principles. Future study may potentially

investigate other methods or look at ways to

improve the suggested hybrid model. Agile

software application creation concerns pertaining

to software testing are discussed in chapter [13].

The preferred tools for contemporary software

development now fall under the Agile methodology

umbrella, which includes Extreme Programming,

Scrum, and Development and Operations,

sometimes known as DevOps. The emphasis in

these approaches is on incremental and iterative

development, in which requirements and solutions

are both changed by the work of interdisciplinary

teams. Each level of development must provide

high-quality results achieved via thorough testing

for such approaches to be successful. Within the

framework of a software development lifecycle that

is built on Scrum and DevOps, that chapter explains

the basics of software testing. Code versioning,

ongoing integration, automated functional testing,

static code analysis, and continuous deployment

are some of the preventative quality techniques and

recommendations for software development

included in the [14] article. The goal of that

software development case study is to showcase

the best practices used by the Smart Campus

Ecosystem. Method: software development efficient

methods based on XP and DevOps are surveyed.

The selection of implementation tools has a direct

impact on the quality of software development. A

number of technologies are used in their

examination of the UNIAJC Smart campuses setting.

In that piece, the results of the rollout are detailed.

Resultant state: The results are shared after the

preventative quality strategy has been exposed and

tested. In conclusion, the preventive quality strategy

aids in improving quality assurance results by giving

development teams vital information for reworking

and improving source code during developmental

runtime or immediately thereafter. First, the

research aims to learn more regarding the

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

4

challenges of DevOps by conducting a methodical

examination of literature and expert opinion

surveys. Second, the study plans to rank the

obstacles found throughout the review using a

fuzzy analyzing hierarchy method. The study's

findings provide a prioritization-based classification

of the DevOps problems as well as a compilation of

significant obstacles encountered by software

companies while executing DevOps. Since FAHP

helps clarify for practitioners what aspects of

DevOps have an impact, it is a fresh approach to

that field of study. It is their hope that scholars and

practitioners in the software sector will be able to

use that study's findings to inform future iterations

of DevOps strategy development and revision.

III. DEVEDGEOPS

What we call "DevEdgeOps" is really the

combination of traditional DevOps methods and

concepts with the possibilities and threats that

come with using computers at the edge. The goal is

to maximize the benefits of edge computing by

using DevOps best practices and modifying DevOps

to work on the edge. The realization that a

comprehensive strategy is required at the edge

area is the driving force behind the rise of

DevEdgeOps. Traditional DevOps practices, while

highly effective in cloud-centric scenarios, fall short

when applied directly to the edge.

Fig.1. ML based Devops for Edge Nodes

The “one-size-fits-all” approach no longer suffices

in the face of the unique challenges posed by the

edge, including scale, connectivity, security, and

device diversity. DevEdgeOps serves as the bridge

that connects these two technological

powerhouses, allowing organizations to benefit

from the agility and automation of DevOps while

navigating the intricacies of edge environments. As

an example, let’s consider the DevOps concept

“Shift Left” and its adaptation at the edge.

EdgeOps integrates DevOps, MLOps, and DataOps

into a single, cohesive, extensible platform.

EdgeOps manages continuous and reliable

operation of AI/ML analytics at scale and across

environments – edge, on-premise, and private

cloud. Build data-centric applications, analytics, and

insights that connects data from across your

organization.

EdgeOps Features

Distributed Database

With an edge-first, data mesh architecture,

maintain data close to the source allowing data and

AI/ML features to remain geographically distributed

with localized ownership while providing a single

pane of glass view requiring no database

administration expertise.

Integrated MLOps

Perform exploratory data analysis, track model

experiments, train/version models, deploy them

directly on edge hardware, and continuously

monitor their performance.

Operational Pipelines

Extend beyond simply deploying models, run and

manage end-to-end data flows in ultra-lightweight

containers. Centrally managed but deployable

anywhere, connect to any data source to unlock

real-time analytics.

 Multi-Source distributed data collection,

storage, and analytics

 Edge-native AI/ML inference with integrated

MLOps

 Ultra-lightweight, low-latency, run-anywhere

Operational Pipelines

 Low-code graphical pipeline builder

 Distributed Database with Data Mesh

architecture

 Self-managed, self-contained, and user owned

 Seamless scaling with modern micro services

architecture

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

5

 Centrally managed pipeline orchestration and

versioning

IV. PROPOSED WORK

1. System Model

One of the primary challenges of any software

development strategy is ensuring quality. An

important part of DevOps is software quality

assurance, which helps in finding and fixing bugs

early on, which in turn allows for more dependable

software releases. Finally, this article uses DevOps

to forecast software quality in Edge Computing

after exploring the link between different DevOps

methods and their effects on software quality. In

this context, DevOps procedures serve as

independent variables, and software quality as a

dependent variable. Utilizing the Pearson

Correlation coefficient, we determined how well

these variables were related to one another. The

study's variables were shown to be positively and

significantly correlated with one another. To put the

theories to the test, we used the ResNet model.

Software quality is most affected by automation in

DevOps approaches, according to our findings.

2. Software Quality Prediction Using ResNet

Model

By providing insights and recommendations based

on data analysis along with predictive modeling, AI

helps DevOps teams make better choices. Instead

of relying on gut feelings or wild guesses,

businesses may now make choices backed by hard

facts. To identify patterns and anomalies that may

indicate problems, AI algorithms may examine log

files, system efficiency indicators, and user activity

data. These systems are able to extract subtle

relationships from massive, complicated datasets by

using machine learning. Testing and deployment

are two examples of repetitive tasks that may be

greatly improved with the help of AI-driven

automation. Software releases are now faster and

more reliable thanks to this method, which also

saves time by reducing the number of errors made.

The capacity to automate these mundane

operations is a major strength of AI DevOps.

Consider the field of software testing. Algorithms

powered by AI can independently create test cases

and evaluate their results. Thanks to this

automation, teams are free to concentrate on other

aspects of the project while testing takes much less

time and effort. In addition, it improves program

quality by finding mistakes and bugs that humans

may miss. To automate decision-making, optimize

performance, and anticipate system breakdowns,

DevOps heavily use machine learning algorithms

for predictive analytics. They are adept at looking

for trends in past data and using that knowledge to

make educated guesses or choices.

Software Quality Measures

 require measure(’Metrics.techDebt’,

mobileImageUpload) is less than or equal 10

days

 require measure(’File.size’, ’test.jar’) is less than

10 megabytes

 prevent measure(’ServiceInstances.count’,

mobileImageUpload) is larger than 10 per hour

 prevent measure(’Deployment.time’,

mobileImageUpload) is larger than 1 minute

 require

measure(’ServiceInstances.failOverTime’) is less

than 5 seconds

 require event(’Errors.general’,

mobileImageUpload) occurred less than 10

times within the last 2 hours,

 require event(’Errors.severe’,

mobileImageUpload) has occurred less than 2

times in the last 2 hours,

 require execution(mobileImageUpload) is

completed within 1 second in 5% of executions

 Feature mobileImageUpload { operation from

endpoint ’*/uploadImage/’, source class

’at.jku.se.galleryApp.services.ImageUploadServic

e’.

The accuracy of the procedure is compromised due

to the presence of several irrelevant and redundant

characteristics in the retrieved set of features, which

must be eliminated. In order to do this, we are

using a feature selection method that eliminates

unnecessary and duplicate functionality. The

attention module learns the feature weights that

are associated with software quality and is hence

responsible for feature extraction. It is possible to

calculate the attention layer's output as,

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

6

 () () () () ()

Where, ()illustrates the weight assigned to

concentrate on and ()show the characteristics.

In the attention layer, we calculate the relationships

between the characteristics so that we may extract

more useful information from them,

 ()

 ∫ ∫ ()

 ()

 () ()

 ()

Where ()to represent the probability function

including the attributes and and (),

 ()standing for the distinct marginal density

functions, respectively. By decreasing the size of the

original patch, which impacts the original

information needed for categorization, the

inception layer discovers certain traits thoroughly.

Classification

The characteristics that were chosen are then used

to classify the data. The purpose of this procedure

is to determine whether the provided unknown log

is benign or malicious. This categorization is carried

out by the softmax layer, which computes the cross

entropy to ascertain the output loss, which may be

expressed as,

 ()

 ∑ (())

 ()

Where the softmax () of a vector can be

formulated as,

 ()

∑

 ()

Increasing the score that corresponds to the logs is

how the categorization is done via this. The

trimming of logs is done to move them to the next

step of categorization after they are designated as

log quality.

Fig.2 Attention based ResNet

This article provides an overview of our ongoing

research on how to operationalize software quality

models, a problem that prevents DevOps-driven

projects from conducting continuous quality checks

and evaluations. To add insult to injury, existing

software quality models don't explain software

quality within its pertinent functional scope since

they don't clearly combine non-functional and

functional criteria. Our study will address these

restrictions by developing a DevOps-specific quality

model that can be automatically operationalized

utilizing standard toolchains. We have already

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

7

interviewed experts from 11 different firms to

gather the most non-functional needs connected to

DevOps. Hence in this paper, Ensemble Kalman

filter is detected which is defined as follows,

 ∑ ()

 (5)

Where, represent the minimum distance

between the nodes which is known as nearest the

node. First, the various instruments are used to

operationalize the various measurements in our

DevOps-centered quality model. This allows us to

automatically analyze nonfunctional criteria that are

based on features. The next step is to link the actual

measurements to the source code along with

deployment artifacts, and then aggregate and

summarize them according to the quality model.

Each non-functional criterion defined in the quality

framework for a piece of software is reviewed for

completion and the level of completion is

maintained in a centralized database for the

continual assessment of software quality.

Functionality

Efficiency

Maintainabilit

y

Portability

Usability

Reliability

On Time

Delivery

Budget

 Fig.3 Indicators to Differentiate Software Quality

Levels

First project the state which is defined as follows,

 () (6)

Where, represent the initial node of the

environment. And then calculate the error

covariance using the EKF which is defined as

follows,

 (7)

The kalman gain is calculated as follows,

 (

) (8)

After calculating the kalman gain then the nearest

node is estimated as follows,

 (() (9)

The following updates the error covariance,

 (() (10)

This equation is representing the updation of error

covariance updation. It is also detecting the

intrusion severity. If the error covariance is high

then the intrusion occurs frequent. If it is low then it

will represent the intrusion severity level is rare. The

severity is known by using the training dataset.

Check whether the given intrusion is occurring

frequent or rare. If it is frequent then the intimation

or alarm is send to the entire software for ensuring

the security. If it is rare the intimation is only send

to the nearest node. For frequent quality alarm is

defined as follows,

∑ ()

∑
 (11)

Pseudocode for EKF

1. INPUT: Log quality software()

2. OUTPUT: Alarm generation

3. Begin

4. Initialize ()

5. Perform state prediction using eqn

6. for every do

7. Calculate error covariance using eqn

8. Compute kalman gain using eqn

9. Update the state estimation using eqn

10. end for

11. Calculate severity level

12. if (S>Th)

13. Generate alarm to every user in the network

14. else

15. Generate alarm to the user

16. end

Where, AG represents alarm generation and

represent the threshold value and () represent

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

8

the alarm generated to entire node in the network

and represent the number of nodes in the

network and represent the severity level. For rare

intrusion, the alarm is generated to the nearest

node () which is define as follows,

∑ ()

∑
 (12)

V. RESULTS & DISCUSSION

We will do a comprehensive case study using a

business associate and expert interviews to verify

our approach to assessing non-functional needs

that are reliant on features. To determine if the

technique is suitable and applicable for continuous

software enhancement for ineffective needs on

feature level, this validation primarily seeks to

collect empirical data.

Fig.4. False Alarm Rate Performance

Fig.5. Accuracy vs. Quality Features

In this paper, we begin with the DevOps conceptual

structure, conduct research using machine learning,

and layout an intelligent DevOps platform. This

platform will help engineers analyze large amounts

of multifarious method notifications, promote

software quality development toward EdgeDevops,

and increase the effectiveness of DevOps engineers.

VI. CONCLUSION

Our study's key contribution is a DevOps-centered

software quality framework that can be

operationalized, allowing us to define and assess

non-functional requirements that rely on features.

We will verify it via actual instances and

conversations with our industry partner, and it can

be incorporated into popular DevOps toolchains.

Software creation and delivery have taken a giant

leap ahead with the integration of AI and DevOps.

A competitive advantage in today's fast-paced

digital market may be yours with this integration,

which improves software quality and dependability.

Improved software lifecycle efficiency, accuracy, and

reliability are the results of transforming DevOps

with AI technologies such as Robotic Process

Automation and Machine Learning.

REFERENCES

1. Meedeniya, D.A., Rubasinghe, I.D., & Perera, I.

(2020). Artefact Consistency Management in

DevOps Practice. Advances in Systems Analysis,

Software Engineering, and High Performance

Computing.

2. López-Peña, M.A., Díaz, J., Pérez, J.E., &

Humanes, H. (2020). DevOps for IoT Systems:

Fast and Continuous Monitoring Feedback of

System Availability. IEEE Internet of Things

Journal, 7, 10695-10707.

3. Díaz, J., Pérez, J.E., López-Peña, M.A., Mena,

G.A., & Yagüe, A. (2019). Self-Service

Cybersecurity Monitoring as Enabler for

DevSecOps. IEEE Access, 7, 100283-100295.

4. Li, Y., Qi, F., Wang, Z., Yu, X., & Shao, S. (2020).

Distributed Edge Computing Offloading

Algorithm Based on Deep Reinforcement

Learning. IEEE Access, 8, 85204-85215.

 Hemanth Swamy. International Journal of Science, Engineering and Technology,

 2022, 9:2

9

5. Rouf, Y., Mukherjee, J., Litoiu, M., Wigglesworth,

J., & Mateescu, R. (2021). A Framework for

Developing DevOps Operation Automation in

Clouds using Components-off-the-Shelf.

Proceedings of the ACM/SPEC International

Conference on Performance Engineering.

6. Batra, P., & Jatain, A. (2020). Measurement

Based Performance Evaluation of DevOps. 2020

International Conference on Computational

Performance Evaluation (ComPE), 757-760.

7. Lin, R., Zhou, Z., Luo, S., Xiao, Y., Wang, X.,

Wang, S., & Zukerman, M. (2020). Distributed

Optimization for Computation Offloading in

Edge Computing. IEEE Transactions on Wireless

Communications, 19, 8179-8194.

8. Domínguez-Acosta, M., & García-Mireles, G.A.

(2021). Identifying Activities for Enhancing

Software Quality in DevOps Settings. 2021 10th

International Conference On Software Process

Improvement (CIMPS), 84-89.

9. Usman, M., Jan, M.A., Jolfaei, A., Xu, M., He, X.,

& Chen, J. (2020). A Distributed and

Anonymous Data Collection Framework Based

on Multilevel Edge Computing Architecture.

IEEE Transactions on Industrial Informatics, 16,

6114-6123.

10. Xu, S., Zhang, Z., Kadoch, M., & Cheriet, M.

(2020). A collaborative cloud-edge computing

framework in distributed neural network.

EURASIP Journal on Wireless Communications

and Networking, 2020.

11. Huo, W., Liu, F., Wang, L., Jin, Y., & Wang, L.

(2020). Research on Distributed Power

Distribution Fault Detection Based on Edge

Computing. IEEE Access, 8, 24643-24652.

12. Jensen, D. (2019). Azure DevOps for IoT Edge

Solutions. Beginning Azure IoT Edge

Computing.

13. Pal, K., & Karakostas, B. (2021). Software Testing

Under Agile, Scrum, and DevOps. Advances in

Systems Analysis, Software Engineering, and

High Performance Computing.

14. Pastrana Pardo, M.A., Ordoñez Erazo, H.A., &

Cobos Lozada, C.A. (2021). Documenting and

implementing DevOps good practices with test

automation and continuous deployment tools

through software refinement. Periodicals of

Engineering and Natural Sciences (PEN).

15. Akbar, M.A., Naveed, W., Mahmood, S., Alsanad,

A.A., Alsanad, A., Gumaei, A.H., & Mateen, A.

(2020). Prioritization Based Taxonomy of

DevOps Challenges Using Fuzzy AHP Analysis.

IEEE Access, 8, 202487-202507.

