
Sai Venkatesh Aravapalli, 2021, 9:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2021 Sai Venkatesh Aravapalli. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Parallelization of Local Sequence Alignment
Sai Venkatesh Aravapalli

Department of Computer Science and Engineering,

Vellore Institute of Technology,

Vellore, Tamil Nadu, India.

aravapalli100@gmail.com.

I. INTRODUCTION

Genome[a] is an emerging field, constantly

presenting many new challenges to researchers in

both biological and computational aspect of

application. Sequence comparison is a very essential

and important operation. They detect similar or

identical parts between two sequences called the

query sequence and the reference sequence. The

global and local alignments are the most prevalent

kinds of sequence alignment.

In global alignment, we find the superior counterpart

between parts of the sequences. On the other hand,

local alignment algorithms try to match parts of

sequences and not the entirety of them Local

alignment is faster than global alignment, due to the

lack of need to align the entire sequences. In our

work, we would be implementing the Smith-

Waterman Algorithm in a serial and parallel manner

to for comparison and analysis.

As common sense suggests, the parallel

implementation should execute and provide the

same result as the serial implementation but in a

lesser amount of time. Advances in genomics have

triggered a revolution in discovery-based research

and systems biology to facilitate understanding of

even the most complex biological systems such as

the brain.

II. LITERATURE REVIEW

Searching databases of DNA and protein sequences

is one of the fundamental tasks in bioinformatics.

The Smith-Waterman algorithm guarantees the

maximal sensitivity for local sequence alignments,

but it is slow. It should be further considered that

biological databases are growing at a very fast

exponential rate, which is greater than the rate of

improvement of microprocessors. This trend results

in longer time and/or more expensive hardware to

manage the problem.

Special purpose hardware implementations, as for

instance super-computers or field programmable

gate arrays (FPGAs) are certainly interesting options,

but they tend to be very expensive and not suitable

for many users.

Abstract- Everybody would agree that serial computing is easy to implement and use, but simply not

efficient enough for industry-level purposes. To solve this problem different types of approaches are

being experimented on both hardware and software. One of the approaches among them is parallel

computing. It is one of the successful approaches that enables the user to use the processor in such a way

that no core remains idle. The allocation of the work depends on the processes. Due to this reason, day

by day higher number of industries are providing and using cloud solutions which work on the basis on

parallel and distributed computing. For instance, Amazon’s AWS or Google’s Google Cloud platform are

becoming the center for development, may it be in the field of web development or in the field of data

analytics. To cope up with the fast-paced improvement in technology, one must also become familiarized

with this domain, and hence this work.

Keywords: - Parallelization, Local Sequence Alignment, Smith-Waterman Algorithm.

 Sai Venkatesh Aravapalli. International Journal of Science, Engineering and Technology, 2021, 9:3

Page 2 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

For the above reasons, many widespread solutions

running on common microprocessors now use some

heuristic approaches to reduce the computational

cost of sequence alignment.

Thus, a reduced execution time is reached at the

expense of sensitivity. FASTA (Pearson and Lipman,

1988) and BLAST (Altschul et al., 1997) are up to

40 times faster than the best known straight forward

CPU implementation of Smith-Waterman. A number

of efforts have also been made to obtain faster

implementations of the Smith-Waterman algorithm

on commodity hardware. Farrar exploits Intel SSE2,

which is the multimedia extension of the CPU. Its

implementation is up to 13 times faster than

SSEARCH (a quasi-standard implementation of

Smith-Waterman).

To our knowledge, the only previous attempt to

implement Smith-Waterman on a GPU was done by

W. Liu et al. (2006). Their solution relies on OpenGL

that has some intrinsic limits as it is based on the

graphics pipeline. Thus, a conversion of the problem

to the graphical domain is needed, as well as a

reverse procedure to convert back the results.

Although that approach is up to 5 times faster than

SSEARCH, it is considerably slower than BLAST.

There are many existing tools for sequence

alignment. Among those, FASTA2 and BLAST3 are

two commonly used ones, where the time complexity

has been reduced through some heuristic algorithms.

These heuristics algorithms obtain efficiency,

however, at the expense of sensitivity. As a result, a

distantly related sequence may not be found in a

search using the above tools.

Researchers have been worked on this issue through

different approaches. For example, Fa Zhang, Xiang

Zhen Qiao, and Zhi-Yong Liu presented a parallel

Smith Waterman algorithm based on divide and

conquer that can reduce running time and memory

requirement. However, their method is also at the

cost of losing sensitivity.

Other methods that apply standard computer

systems such as high-performance supercomputers

and computer clusters with software solutions for

conducting the Smith-Waterman algorithm, although

can achieve high sensitivity and reduce running time,

are with extremely high cost. With the advance

technology in the FPGA, a cost-efficient parallel

implementation for the Smith-Waterman algorithm

can be obtained.

III. ALGORITHM

Smith-Waterman algorithm calculates the local

alignment of two sequences. It guarantees to find

out the best possible local alignment taking into

account the specified scoring system. This includes a

substitution matrix and a gap- scoring method.

Scores consider match, mismatch and substitution.

To measure the comparison between two sequences,

a score is calculated as follows.

Given an alignment between sequences S0 and S1,

the following values must be assigned, for each

column:

 ma = (+5) [Match]

 mi = (-3) [Mismatch]

 G = (-4) [Gap]

IV. PROCEDURE

Initialization of the matrix and consider two

sequences A and B. Matrix filling with the suitable

scores. The two sequences are set in a matrix form by

means of A+ 1 column and B+1 row. The value in the

first row and first column are set to zero.

The second and essential step of the algorithm is

filling to entire matrix. To fill each and every cell it is

important to know the diagonal values.

Trace back the sequence for an appropriate

alignment is trace backing; before that the maximum

score obtained in the entire matrix has to be

detected for the local alignment of the sequences.

It is likely to those maximum scores can be present in

one or more than one cell, in such case there may be

option of two or more alignments, and the best

alignment can be obtained by scoring it. Tracing

back begins from the position which has the highest

value, pointing back with the pointers, consequently

 Sai Venkatesh Aravapalli. International Journal of Science, Engineering and Technology, 2021, 9:3

Page 3 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

find out the possible predecessor, then go to next

predecessor and continue until it reaches the score 0.

Fig 1. Trace Back of possible alignment.

V. EXISTING TOOL

There are few existing tools which have a parallel

implementation of the Smith- Waterman algorithm,

but the most prominent one is Clustal W [EMBOSS

WATER]. EMBOSS Water uses the Smith-Waterman

algorithm (modified for speed enhancements) to

calculate the local alignment of two sequences. We

can perform the alignment for protein, DNA or RNA

sequences.

VI. PROPOSED METHOD

The problem at hand was tackled with a modular

approach. Eight functions were constructed, each of

which would be explained as follows:

1. n-Element:

This function is used to calculate the number of

elements that have been found by the Smith

Waterman Algorithm. Three conditions are given:

One of which is to find out if the number of elements

in the diagonal are increasing, decreasing or stable.

2. Calc First Diag Element:

This function is used to calculate the position of the

maximum scored value in the matrix. This value

needs to be found because the algorithm suggests

that the backtracking to find the path should be

started from this particular point.

3. Similarity Score:

This function is used to find out the optimal order of

execution based on three conditions, which are used

to calculate the new values of left, upper and the

diagonal elements.

 If the diagonal element > maximum element, Move

diagonally upwards.

 If upper element > maximum element, move

upwards.

 If left element > maximum element, move leftwards

every iteration, the values of maximum element are

updated and inserting into the similarity and

predecessor matrices.

4. Match Mis-match Score:

This function is used to calculate a similarity function

or the alphabet for a match or mismatch. If the value

of the two elements is equal, it is a match, otherwise

it’s a mismatch.

5. Backtrack:

The purpose of this function is to modify the matrix

that needs to be printed and helps us identify the

path that needs to be taken to get the most

optimum solution Print Matrix: It’s a looped iteration

implementation to display the matrix.

6. Print Predecessor Matrix:

It is in this function in which we print the arrows

depicting the path of local alignment.

7. Generate:

This function generates the two sequences A and B

which would be locally aligned with each other. A

random seed is used to ensure the reproducible

nature of the output.

8. Packages required for implementation:

<stdio.h>

The C programming language provides many

standard library functions for file input and output.

These functions make up the bulk of the C standard

library

<stdlib.h>

is the header of the general-purpose standard library

of C programming language which includes

functions involving memory allocation, process

control, conversions and others. It is compatible with

C++ and is known as cstdlib in C++. The name

"stdlib" stands for "standard library"

<math.h>

The math.h header defines various mathematical

functions and one macro. All the functions available

in this library take double as an argument and return

double as the result.

<omp.h>

 Sai Venkatesh Aravapalli. International Journal of Science, Engineering and Technology, 2021, 9:3

Page 4 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

It is a library that allows memory multiprocessing

programming in C.

<time.h>

 In C programming language time.h (used as ctime in

C++) is a header file defined in the C Standard

Library that contains time and date function

declarations to provide standardized access to

time/date manipulation and formatting.

VII. RESULTS

Fig 2. Output Result.

1. Analysis of Results:

The code was run for various lengths of sequences

and the elapsed time was recorded in each case.

After tabulating all the executions, we get:

Fig 3. Graph of difference between serial and parallel

with respective time.

Table 1. Result Analysis between serial and Parallel.

Matrix Size Serial Parallel

10 x 10 0.001308 0.000352

20 x 20 0.00273 0.00170

50 x 50 0.0099 0.000374

100 x 100 0.0506 0.002353

250 x 250 0.27707 0.006117

500 x 500 1.324 0.047371

1200 x 1200 11.62 0.166454

VIII. CONCLUSION AND FUTURE WORK

As we can see in the above table for comparison, for

small lengths of the sequence, serial and parallel

execution times are having a slight difference in time

but the time variation goes on increasing with the

increase in the sequence length.

The serial execution time has a rapid increase in

graph while the parallel execution time has been

almost constant for lower sequence length and

increases slightly with increase in sequence length.

However, the parallel implementation remains stable

with not a high rise in the execution time because of

the parallel execution of the task with two threads,

making the process faster than its serial counterparts.

REFERENCES

[1] Cuong Cao Dang, Vincent Lefort, Vinh Sy Le,

Quang Si Le, and Olivier Gascuel, “Maximum

likelihood estimation of amino acid replacement

rate matrix”, Bioinformatics. 2011, 27(19):2758-

60.

[2] Frank Keul, Martin Hess, Michael Goesele and

Kay Hamacher, “PFASUM: a substitution matrix

from Pfam structural alignments”, June 5 2017.

[3] S Henikoff and J G Henikoff, “Amino acid

substitution matrices from protein blocks.”, Proc

Natl Acad Sci U S A. 1992 Nov 15; 89(22): 10915–

10919.

[4] Gary Benson, Yozen Hernandez and Joshua

Loving,” A Bit-Parallel, General Integer-Scoring

Sequence Alignment Algorithm”, 2004.

[5] Vincent Ranwez and Yang Zhang,” Two Simple

and Efficient Algorithms to Compute the SP-

 Sai Venkatesh Aravapalli. International Journal of Science, Engineering and Technology, 2021, 9:3

Page 5 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

Score Objective Function of a Multiple Sequence

Alignment”, PLoS One, 2016.

[6] Robert C. Edgar1 and Kimmen Sjölander,” A

comparison of scoring functions for protein

sequence profile alignment “, May, 2004.

[7] Cheng Ling, Khaled Benkrid, Ahmet T. Erdogan,

"High performance Intra-task parallelization of

Multiple Sequence Alignments on CUDA-

compatible GPUs", Adaptive Hardware and

Systems (AHS) 2011 NASA/ESA Conference on,

pp. 360- 366, 2011.

[8] Chao-Chin Wu, Jenn-Yang Ke, Heshan Lin, Wu-

chun Feng, "Optimizing Dynamic Programming

on Graphics Processing Units via Adaptive

Thread-Level Parallelism", Parallel and

Distributed Systems (ICPADS) 2011 IEEE 17th

International Conference on, pp. 96-103, 2011.

