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I. INTRODUCTION 
 

Growing need to develop and improve the 

effectiveness of heat exchangers has led to a broad 

range of investigations for increasing heat transfer 

rate along with decreasing the size and cost of the 

industrial apparatus accordingly. One of these many 

apparatus which are used in different industries is 

double pipe heat exchanger. This type of heat 

exchanger has drawn many attentions due to 

simplicity and wide range of usages. In recent years, 

several precise and invaluable studies have been 

performed in double pipe heat exchangers. 

 

In this we traced the history of publications 

regarding double pipe heat exchanger back to its 

beginnings in the late 1940s [3, 4]. The studies 

broadly support the view that this type of heat 

exchanger is heading towards a considerable  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

progress. Through these years, a plethora of 

researches have been carried out which fall into 

various categories. In some cases, just the working 

fluids characteristics and their modifications were 

studied. Some investigated active methods, passive 

methods, compound methods, geometry change and 

the other heat enhancement methods. 

 

II. COMPUTATIONAL FLUID DYNAMICS 

 
Fluid (gas and liquid) flows are governed by partial 

differential equations (PDE) which represent 

conservation laws for the mass, momentum and 

energy.  

 

Computational Fluid Dynamics (CFD) is used to 

replace such PDE systems by a set of algebraic 

equations which can be solved using digital 

computers. The basic principle behind CFD modeling 

method is that the simulated flow region is divided 

into small cells.  
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Differential equations of mass, momentum and 

energy balance are discredited and represented in 

terms of the variables at any predetermined position 

within or at the centre of cell. These equations are 

solved iteratively until the solution reaches the 

desired accuracy (Ansys Fluent 14.0).  

 

CFD provides a qualitative prediction of fluid flows 

by means of 

 Mathematical modeling (partial differential 

equations) 

 Numerical methods (discretization and solution 

techniques) 

 Software tools (solvers, pre- and post-processing 

utilities) 

 

III. METHODOLOGY 

 
1. Specifications of Double Pipe Heat Exchanger 

Used: 

The experimental study is done in a double pipe heat 

exchanger having the specifications as shown in 

table below:- 

 

Table 1. Structural parameters. 

Fin material Aluminium 

Fin number, N 10,11, 12 

Fin width, b 0.6 mm 

Inner tube internal diameter Di 8 mm 

Inner tube external diameter Do 10 mm 

annulus internal diameter Ds 20 mm 

Tube length, L 100 mm 

 

2. Computational Domain: 

The aim of this research to numerically study and 

compare different configurations of straight and 

helical fins in a double pipe heat exchanger. The 

working fluids are air and water, cold air flows in the 

annulus side while hot water flows in the inner tube 

side in counter-current configuration.  Six double 

pipe heat exchangers are considered, three with 

longitudinal fins used to validate the numerical 

model, and three with helical fins with a variable fins. 

 

 
(a) 

 
(b) 

Fig 1. CFD domain. 

 

3. Boundary Conditions: 

3.1 Inlet:  

 
 

3.2 Outlet: 

 
 

3.3 Tube: 

 
 

3.4 Fin: 

 
 

4. Meshing of Domain: 

In this study, a general curve linear coordinate grid 

generation system based on body–fitted coordinates 

was used to discrete the computational domain into 

a finite number of control volumes. The geometries 

of the problems are carefully constructed. All cases 

were modeled and meshed with the GAMBIT [12].  

 

FLUENT also comes with the CFD program that 

allows the user to exercise the complete flexibility to 

accommodate the compatible complex geometries. 

The refinement and generation of the grid system is 

important to predict the heat transfer in complex 

geometries.  

 

In other words, density and distribution of the grid 

lines play a pivotal role to generate accuracy. Due to 

the strong interaction of mean flow and turbulence, 

the numerical results for turbulent flows tend to be 

more dependent on grid optimization than those for 

laminar flows [11]. 

 

 
Fig 2. Mesh Model. 
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IV. RESULTS 
 

From the above results, it can be concluded that the 

numerical model provides reliable results and has a 

reasonable precision. The model is next used to 

predict the heat transfer and thermos-hydraulic 

performances for different configurations of a 

double-pipe heat exchanger with helical fins. 

 

 
 

Fig 3. Plot of heat transfer coefficient versus Re for 

longitudinal fins. 

 

 
 

Fig 4. Plot of pressure drop versus Re for longitudinal 

fins. 

 
(a) DPHE with straight fins. 

 

 
(b) DPHE with helical fins. 

 

Fig 5. Perspective view of velocity streamlines for Re 

= 12700. 

 

 
Fig 6. Velocity contour. 

 

 
Fig 7. Temperature variation with straight fins. 
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Fig 8. Temperature variation with helical fins. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

Fig 9. Temperature variation contours on the plane. 

 

 
Fig 10. Variation of heat transfer coefficient in DPHE 

with straight fins with number of fins. 

 

 
Fig 11. Variation of heat transfer coefficient in DPHE 

with helical fins with number of fins. 

324

325

326

327

328

329

330

331

332

12700 13700 14700 15700 16700

H
o

t 
o

u
tl

e
t 

te
m

p
e
ra

tu
re

 (
K

)

Reynolds number

N = 10 N = 11 N = 12

0

100

200

300

400

500

12700 13700 14700 15700 16700

H
e
a
t 

tr
a
n

sf
e
r 

c
o

e
ff

ic
ie

n
t 

(W
/m

2
-k

)

Reynolds number (Re)

N = 10 N = 11 N = 12

0

100

200

300

400

500

12700 13700 14700 15700 16700H
e
a
t 

tr
a
n

sf
e
r 

co
e
ff

ic
ie

n
t 

(W
/m

2
-k

)

Reynolds number (Re)

N = 10 N = 11 N = 12



 Abdul Aziz Faisal.  International Journal of Science, Engineering and Technology, 2021, 9:4  

Page 5 of 6 

 

International Journal of Science, 
Engineering and Technology 

An Open Access Journal 

 
Fig 12. Variation of Nusselt number in DPHE with 

straight fins with number of fins. 

 

 
Fig 13. Variation of Nusselt number in DPHE with 

helical fins with number of fins. 

 

 
Fig 14. Ratio of heat transfer rate of heat exchanger 

with helical fins to that with longitudinal fins plotted 

versus Re. 

 
Fig 15. Variation of pressure drop in DPHE with 

straight fins with number of fins. 

 

 
Fig 16. Variation of pressure drop in DPHE with 

helical fins with number of fins. 

 

 
Fig 17. Thermal performance enhancement factor for 

DPHE with straight fins versus Re. 
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Fig 18. Thermal performance enhancement factor for 

DPHE with helical fins versus Re. 

 

V. CONCLUSION 

 
The following conclusions were drawn from the 

obtained results. Helical fins result in a higher heat 

transfer surface area than longitudinal fins. Overall, 

the thermo hydraulic performance of double-pipe 

heat exchangers is better with helical fins than with 

longitudinal fins, which indicates that the pressure 

loss of helical fins is offset by the improvement in the 

heat transfer rate. 

 

In all the configurations, the annulus-side heat 

transfer coefficient ha increases with increasing 

Reynolds number. For the annulus with helical fins, 

ha also increases with increasing number of fins 

spacing. The higher velocity results in significant 

increase in the annulus heat transfer surface area 

result in a considerable thermal enhancement of ha 

on the gas side, especially for higher helical fin 

spacing. Finally, the helical fin configuration for 

double-pipe heat exchangers is demonstrated to be 

effective in enhancing the heat transfer and 

improving the thermo hydraulic performance of this 

type of heat exchanger. 
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