
Shreyas S, 2021, 9:4

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2021 Shreyas S. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Overview on the Security of Containerization
Shreyas S, Rohith S Yadav, S.G Raghavendra Prasad, B.K Srinivas

Department of Information Science and Engineering,

R.V College of Engineering, Bengaluru, India

I. INTRODUCTION

The last decade has seen a blast of improvement in

the space of virtualization advances, which permit

the dividing of a PC framework into numerous

segregated virtual conditions. The advancements

offer generous advantages that have been driving

their advancement quickly. Quite possibly the most

regular explanations behind embracing virtualization

advances is worker virtualization in server farms.

With worker virtualization, a director can make at

least one virtual framework occasion on a solitary

worker. These virtual frameworks work as genuine

actual workers and can be leased on a membership

premise. Amazon EC2, Rackspace, and Netmagic are

a few famous cases of such server farm specialist

organizations. Another normal use is for work area

virtualization, where one PC can run a few OS

occurrences. Work area virtualization offers help for

applications that can run uniquely on a explicit OS.

The development in the utilization of virtualization

advancements advances the interest for a

virtualization arrangement which can give thick,

versatile, and secure client conditions. A enormous

number of virtualization arrangements have arisen to

the market. They can be characterized into two

significant classes: holder based virtualization and

hypervisor-based virtualization. Of these two classes,

holder based virtualization can give a more

lightweight and proficient virtual climate. It permits

multiple times more virtual conditions to run on an

actual worker contrasted with hypervisor-based

virtualization. Be that as it may, compartment based

virtualization additionally accompanies security

concerns.

A notable agent of compartment based virtualization

approach. We think about two regions: the interior

security of Docker, and how Docker communicates

with the security highlights of the Linux portion, like

SELinux and AppArmor, to solidify the host

framework.

The investigation analysed the inward security of

Docker dependent fair and square of disconnection

Docker can give to its virtual surroundings. The

collaboration among Docker and the security

highlights of the bit was assessed dependent on how

the highlights are upheld by Docker. Supposedly,

Docker is a moderately new innovation, and this is

one of the principal examinations of this sort that

emphasis on its security perspectives.

Abstract- In the course of the most recent couple of years, the utilization of virtualization advances has

expanded drastically. This makes the interest for effective and secure virtualization arrangements

become more self-evident. Compartment based virtualization and hypervisor-based virtualization are

two principle sorts of virtualization innovations that have arisen to the market. Of these two classes,

compartment based virtualization can give a more lightweight and productive virtual climate, yet not

without security concerns. In this paper, we dissect the security level of Docker, a notable agent of

compartment based approaches. The examination thinks about two regions: (1) the inner security of

Docker, and (2) how Docker interfaces with the security highlights of the Linux part, like SE Linux and

App Armor, to solidify the host framework. Moreover, the paper likewise talks about and recognizes

what should be possible when utilizing Docker to build its degree of safety.

Keywords:- Docker, host framework , etc.

 Shreyas S. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 2 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

II. APPROACHES IN VIRTUALIZATION

A large portion of the virtualization advancements

can be characterized into two significant

methodologies:

 Compartment based virtualization and

 Hypervisor- based virtualization

The previous gives virtualization at the working

framework level, while the last gives virtualization at

the equipment level. Every one of the methodologies

enjoys its own benefits and impediments, which are

depicted in this segment.

Fig 1. Container-based Virtualization Architecture.

Fig 2. Hypervisor based Virtualization Type 1 and

Type 2.

1. Type 1 Hypervisor:

In this case, the Hypervisor is a standalone machine

with its own operating system installed on its own

hardware, which produces a virtualization layer on

which virtual machines with multiple operating

systems such as Windows, OS X, or Linux can be

formed. This is demonstrated using the VM Ware

ESXI server. The Linux kernel is the primary virtual

machine in the ESXi Hypervisor model, and it is

started by the service console. The vmkernel runs on

the bare computer during normal operation, while

the Linux-based service console runs as the first

virtual machine.

2. Type 2 Hypervisor:

The type 2 hypervisor, often known as embedded

hypervisor, is the most often used hypervisor. The

hypervisor has been popular among individuals and

small businesses building software or servers since

early 2017. The virtual machine is a piece of software

that runs on top of a host machine and has its own

operating system. So, there's a Host Machine with its

own operating system, on which a VM Software with

its own virtual operating system is loaded, and on

top of that, a new set of virtual machines are

installed.

III . DOCKER OVERVIEW

Fig 3. Architecture of Docker.

Docker is an open source container technology for

"building, shipping and also for running distributed

applications". It has been used in a number of well-

known applications, including Spotify, Ebay and Yelp.

Docker, a relatively new candidate, is currently one of

the most successful technologies considering

container technologies have been around for more

than a decade. It has new capabilities that previous

technology lacked. It provides APIs for quickly and

safely creating container management and controls

 Shreyas S. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 3 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

the container. Developers can package apps into

lightweight Docker containers that can run on

practically any platform without needing to be

modified. Furthermore, Docker has the ability to

deploy more virtual environments than VirtualBox.

On the same hardware, other technologies can be

used. Last but not least, Docker works nicely with

third-party applications. It makes the process of

administration and deployment of Containers

created with Docker.

IV. CONTAINER ORCHESTRATION

OVERVIEW

The automated arrangement, coordination, and

management of computer systems, middleware, and

services is known as orchestration. While Docker

established an open standard for bundling and

dispersing containerized apps, another challenge

arose. What would be the best way to build and plan

these containers? How do the many stakeholders in

your application communicate with one another?

What methods are there for scaling container

occurrences? Before long, there were solutions for

organising containers. Kubernetes, Mesos, and

Docker Swarm are a few of the more well-known

options for influencing a number of machines to

function as if they were one large system, which is

critical in a large-scale situation.

Fig 4. Kubernetes Architecture.

V. PROBLEM STATEMENT

As Docker is more prevalent in the industry than a

Hypervisor or a Virtual Machine, more secure

measures are required. According to a poll

conducted by “RightScale,” 49 percent of users have

used docker- based cloud architecture in 2018, up

from 35 percent in 2017. With such a huge growth in

users, it's important to figure out what the security

risks are and measures required to nullify the security

issues of docker and Kubernetes.

VI. SECURITY THREATS AND ITS

SOLUTION

1. IPC Isolation:

IPC isolation is achieved by Docker via IPC

namespaces, which allow for the establishment of

independent IPC namespaces.An IPC namespace's

processes are unable to read or write. IPC resources

should be written in other IPC namespaces. Each

container is given an IPC namespace, which prevents

the processes in a container from interfering with the

processes in another container.

2. Isolation of the network:

To prevent network-based attacks like Man-in-the-

Middle and ARP spoofing, network isolation is

critical.Containers must be set up in such a way that

they can work together.they are unable to listen in

on network traffic or influence it neither the host nor

the other containers.Docker builds a separate

networking network for each container by utilising

network namespaces.

3. Resource Limiting:

DoS attack is common in the system which is

Multitenant, where a group of processes will

accumulate all resources and leads to disrupting the

normal working of the process. Hence Cgroups are

the main component which docker uses in order to

tackle this issue by controlling the amount of

resources.

The Center for Internet Security (CIS) issued a

number of recommendations for hardening

Kubernetes or Docker containers. For example,

enabling built-in Linux security mechanisms such as

SELinux and Seccomp profiles is one of the

recommended practises. SELinux is a kernel-level

capability for controlling file and network access.

whereas Seccomp profiles limit the number of

system calls a programme can make. These

capabilities, when combined, provide a fine- grained

level of control over the workloads that operate on

the node. (According to The New Stack, 2018). Real

considerations of hub security, on the whole, include:

 Shreyas S. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 4 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

 Anchoring hub communications with TLS customer

authentication to ensure that all fundamental Apus

passageways are secured end-to-end.

 Enabling part-level security measures such as

SELinux or Seccomp. These capabilities aid in

limiting the attack surface on the hub, allowing for

more control over the overall security of the

system.

 Restricting direct access to Kubernetes hubs, such

as Secure Shell (SSH) access: Forcing all hub access

through Kubernetes ensures adequate access

control and logging. This reduces the risk of

unapproved access to assets.

 Use industry best practises to construct and

solidify the Linux hubs that run compartments,

such as the CIS Docker Benchmark.

4. Kubernetes Security Isuues and solution:

The primary problem with container orchestrator is

that it relies on a single container to run the entire

cluster. As a result, if one container is compromised,

the entire cluster is destroyed.

The default behaviour of many Kubernetes clusters

(where a token providing access to the Kubernetes

API mounts into each container) can cause security

issues mainly when token have the administrator

right. So attacker with control over master node will

have control over all the worker node, hence RBAC

needs to be configured Securely.

5. Workload Configuration:

The configuration for deploying your apps in

Kubernetes is often done in code, whether using

Kubernetes YAML, Helm Charts, or templating tools.

This code has an impact on the Kubernetes security

controls, which control how a workload operates and

what can and cannot happen in the event of a

breach.

6. Kubernetes Networking:

When it comes to Kubernetes, network security is

crucial. Pod communications, ingress, egress, service

discovery, and, if necessary, service meshes (such as

Istio) should all be considered. Every service and

machine in the network is at danger if a cluster is

infiltrated.

As a result, it's critical to make sure your services and

communication are limited to what's required. This,

paired with the use of cryptography to keep your

computers and services private, can help contain the

threat and prevent a large- scale network breach.

7. Security of Kubernetes infrastructure:

Particularly the master nodes, databases, and

certificates—is critical since it is a distributed

programme that runs across many servers (using

physical or virtual networking and storage). If a

hostile actor is successful in breaching your

infrastructure, they will have complete access to your

cluster and applications.

VII. CONLCUSION

Compared to the hypervisor - based virtualization,

container-based virtualization can deliver higher

density virtual environments and greater

performance. However, it is believed that the latter is

more secure than the former.

In this work, we investigated Docker, one of the most

widely used container-based virtualization systems,

to see how secure its containers are. Even with the

default settings, Docker containers are fairly safe.

Docker containers' security can be improved by

running them as "non-privileged" and enabling

additional hardening options in the Linux kernel,

such as AppArmor or SELinux.

Following this report, further research could compare

Docker container security to that of alternative

containerization platforms or virtual machines. Such

research could lead to a more in-depth static

examination of Docker or a larger understanding of

container security in general.

REFERENCES

[1] Container Security Considerations in a K8’s

Deployment. https://thenewstack.io/container-

security-considerations-kubernetes-deployment/

[2] Lanzi, A., Balzarotti, D., & Kirda, E. Hypervisor-

based malware protection with AccessMiner.

Computers & Security. doi:10.1016/j.cose.2015.

03.007.

[3] Omernik, J., Bertucci, Ali, Z., & Constantin, L.

(2018, December 04).Vulnerability Uncovered In

Kubernetes. Retrieved from https://securitybo

ulevard.com/2018/12/vulnerabil ity-uncovered-

in-kubernetes/

 Shreyas S. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 5 of 5

International Journal of Science,
Engineering and Technology

An Open Access Journal

[4] D. J. Walsh. Are docker containers really

secured?http://opensource.com/business/14/7/d

oc ker-security-selinux.

[5] D. J. Walsh. Bringing new security features to

docker.https://opensource.com/business/14/9/se

curity-for-docker..

[6] Containers & docker: How secure are

they?https://blog.docker.com/2013/08/container

s- docker-how-secure-are-they.

[7] McCune, R. (2018, December 05). A hacker's

guide to Kubernetes security. Retrieved

December 8, 2018, from https://techbec

on.com/hackers-guide- kubernetessecurity.

