
Parul, 2021, 9:4

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2021 Parul. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly credited.

Fault Prediction using Object Oriented

Metrics: CK Metrics and MOOD Metrics
Research Scholar Parul

Department of Computer Science,

Baba Mastnath University,

Rohtak, India.

Asst. Prof. Deepak Kumar, Asst. Prof. Manjeet Kaur
Department of Computer Science,

Govt. College Sector 1,

Panchkula, India

I. INTRODUCTION

It is widely accepted that object-oriented

development requires a different way of thinking

than traditional structured development and

Software projects are shifting to object-oriented

design. In structured approach, the problem is

divided into functions. Each function has its own data

and logic. This structured approach has following

limitations. Data is given second importance where

as function is given first importance. But it is known

that data is most important than function. The

existence of function is due to data. This approach

Abstract- It is widely accepted that object-oriented development requires a different way of thinking

than traditional structured development and software projects are shifting to object-oriented

design. In structured approach, the problem is divided into functions. Each function has its own data

and logic. This structured approach has following limitations. Data is given second importance

where as function is given first importance. But it is known that data is most important than

function. The existence of function is due to data. This approach does not model the real world very

well. These above limitations are overcome by object oriented approach. In object-oriented

approach, problem is divided into objects. Objects contain the data and function that operate on the

data. Data and its functions are encapsulated in to a single entity i.e. object. This approach

represents the real world very well and data is given more importance in comparison to function.

The main advantage of object-oriented design is its modularity and reusability. Object-oriented

metrics are used to measure properties of object-oriented designs. Metrics are a means for attaining

more accurate estimations of project milestones, and developing a software system that contains

minimal faults. Project based metrics keep track of project maintenance, budgeting etc. Design

based metrics describe the complexity, size and robustness of object-oriented and keep track of

design performance. Compared to structural development, object-oriented design is a comparatively

new technology. The metrics, which were useful for evaluating structural development, may perhaps

not affect the design using OO language. As for example, the “Lines of Code” metric is used in

structural development whereas it is not so much used in object-oriented design. One study

estimated corrective maintenance cost saving of 42% by using object-oriented metrics [21].

Keywords:- Object-oriented designs, project based metrics, structural development etc.

 Parul. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 2 of 7

International Journal of Science,
Engineering and Technology

An Open Access Journal

does not model the real world very well. These above

limitations are overcome by object oriented

approach. In object-oriented approach, problem is

divided into objects. Objects contain the data and

function that operate on the data. Data and its

functions are encapsulated in to a single entity i.e.

object. This approach represents the real world very

well and data is given more importance in

comparison to function.

The main advantage of object-oriented design is its

modularity and reusability. Object-oriented metrics

are used to measure properties of object-oriented

designs. Metrics are a means for attaining more

accurate estimations of project milestones, and

developing a software system that contains minimal

faults. Project based metrics keep track of project

maintenance, budgeting etc. Design based metrics

describe the complexity, size and robustness of

object-oriented and keep track of design

performance. Compared to structural development,

object-oriented design is a comparatively new

technology.

The metrics, which were useful for evaluating

structural development, may perhaps not affect the

design using OO language. As for example, the

“Lines of Code” metric is used in structural

development whereas it is not so much used in

object-oriented design. One study estimated

corrective maintenance cost saving of 42% by using

object-oriented metrics [21].

II. REVIEW OF LITERATURE

Chidamber and Kemerer [9] proposed a suite of

object-oriented design metrics which were

developed based on the ontology of Bunge. They

analytically evaluated the metrics against Weyuker’s

measurement theory principles [26] and provided an

empirical sample of these metrics from two

commercial systems. Several studies have been

conducted to validate CK metrics. Basili, Briand and

Melo [4] presented the results of an empirical

validation of CK metrics. Based on eight medium

sized school projects they applied a logistic

regression model to investigate whether these

metrics can be used as fault-prone class indicators.

Their results suggest that five of the six CK metrics

are useful quality indicators for predicting fault-

prone classes.

Li and Henry [17] used two size metrics and eight

OO metrics, including five of CK metrics, to

empirically validate the applicability of these metrics

on the number of lines changed per class, assumed

to be related to maintenance effort. This empirical

validation was conducted on two commercial

systems using multiple linear regression technique.

Their results show that OO metrics can be used to

predict maintenance effort, measured by the number

of lines changed per class, in an object-oriented

system. Li [16] also theoretically validated CK metrics

using metric-evaluation framework proposed by

Kitchenham et. al. [15].

He discovered some deficiencies of CK metrics in the

evaluation process and proposed a new suite of OO

metrics that overcome these deficiencies. Chidamber

et. al. [8] further explored the applicability of CK

metrics on practical managerial work such as

productivity and rework effort. Their empirical results

suggest CK metrics were significant economic

variable indicators for the three commercial OO

systems used in their study. Analyzing a medium-

sized telecommunication system, Cartwright and

Shepperd [7] studied the inheritance measures from

the CK suite (DIT, NOC) and found that both these

measures were associated with defect density of

classes.

Selvarani, Nair & Prasad [22] building a quality

system has been the driving goal of all software

engineering efforts over few decades. The lack of

design and implementation guidance may affect the

overall quality of the system which depends on

reusability, defect level and maintainability of the

system. A significant research effort is required to

define quality measures. Measuring the structural

design properties of software artifacts with design

metrics, is a promising approach at an early stage.

Our estimation model provides an assessment of the

defect proneness of the system in an early stage by

analyzing the interrelationship among the defect

occurrence and design parameters of the software.

Subramanyan & Krishnan [24] study enhances

prior empirical literature on OO metrics by providing

a new set of results validating the association

between a subset of CK metrics and defects detected

during acceptance testing and those reported by

customers. One of our main findings is that, after

controlling for size, we find that some of the

 Parul. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 3 of 7

International Journal of Science,
Engineering and Technology

An Open Access Journal

measures in the CK suite of OO design complexity

metrics significantly explain variance in defects.

Tang, Kao, Chen [25] validated CK metrics using

three industrial real-time systems and the results

suggest that WMC can be a good indicator for faulty

classes and RFC is a good indicator for OO faults.

Furthermore, presented a set of new metrics which

considered useful as indicators of OO fault-prone

classes. Therefore, these new metrics can be utilized

to decide which classes need to be tested using OO

testing techniques.

III. OBJECTIVE OF THE RESEARCH

 To study various object-oriented metrics.

 To study fault prediction using various object-

oriented metrics.

 To investigate the impact of faults on object

oriented software to improve the quality.

IV. RESEARCH METHODOLOGY

Object-oriented design has become a dominant

method in software industry and many design

metrics of object oriented programs have been

proposed for quality prediction, but there is no well-

accepted statement on how significant those metrics

a The object oriented metrics will be adopted to

identify a limited set of measureable attributes that

have a significant impact on prediction of Faults and

quality attributes. The techniques involved will be

statistical analysis.The statistical techniques will be

used to reveal the relationship between metrics and

dependent variables.

1. The Proposed Plan of Work:

The starting of the dissertation would be devoted on

the introduction of various existing object-oriented

design metrics. The second step would focus on

study of software defects using complexity metrics in

object-oriented design. The third step would focus

on study of faults in object-oriented design. The

fourth step would focus on impact faults on the

quality of object-oriented software. Lastly the

summary and conclusions and scope for further

research would be discussed.

Object-oriented design has many useful qualities,

such as cohesion, coupling, inheritance,

encapsulation, information hiding, localization etc.

 Cohesion refers to the internal consistency within

the parts of the design. Cohesion is centred on data

that is encapsulated within an object and on how

methods interact with data to provide well-

bounded behaviour. A class is cohesive when its

parts are highly correlated. It should be difficult to

split a cohesive class. Cohesion can be used to

identify the poorly designed classes. “Cohesion

measures the degree of connectivity among the

elements of a single class or object”[5].

 Coupling indicates the relationship or

interdependency between modules. For example,

object X is coupled to object Y if and only if X sends

a message to Y that means the number of

collaboration between classes or the number of

messages passed between objects. Coupling is a

measure of interconnecting among modules in a

software structure.

 Inheritance is a mechanism whereby one object

acquires characteristics from one, or more other

objects. Inheritance occurs in all levels of a class

hierarchy. “Inheritance is the sharing of attributes

and operations among classes based on a

hierarchical relationship” [20].In general,

conventional software does not support this

characteristic because it is a pivotal characteristic in

many object-oriented systems as well as many

object-oriented metrics focus on it.

 Encapsulation is a mechanism to realize data

abstraction and information hiding. Encapsulation

hides internal specification of an object and show

only external interface. “The process of

compartmentalizing the elements of an abstraction

that constitute its structure and behaviour;

encapsulation serves to separate the contractual

interface of an abstraction and its

implementation”[5].Encapsulation influences metrics

by changing the focus of measurement from a

single module to a package of data.

 Information Hiding is the process of hiding all the

secrets of an object that do not contribute to its

essential characteristics. An object has a public

interface and a private representation; these two

elements are kept distinct. Information hiding acts a

direct role in such metrics as object coupling and

the degree of information hiding.

 Parul. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 4 of 7

International Journal of Science,
Engineering and Technology

An Open Access Journal

“All information about a module should be

private to the module unless it is specifically

declared public”[1].

 Localization is based on objects in object-

oriented design approach. In a design, if there

are some changes in the localization approach,

the total plan will be violated, because one

function may involve several objects, and one

object may provide many functions.

“Localization is the process of gathering and

placing things in close physical proximity to each

other”[3].

Metrics should apply to the class as a complete

entity. Even the relationship between functions and

classes is not necessarily one-to-one. For that reason,

metrics that reflect the manner in which classes

collaborate must be capable of accommodating one-

to-many and many-to-one relationships [19].

In the object-oriented environment, one of the major

aspects having strong influence on the quality of

resulting software system is the design complexity.

The structural property of the software component is

influenced by the cognitive complexity of the

individuals involved in designing, development and

testing, and it will be reflected in the structural

properties of the developed software. This cognitive

complexity is likely to affect other aspects of these

components, such as fault-proneness and

maintainability.

The OO paradigm offers the technology to create

components that can be used for generic

programming [22]. Design complexity has been

conjectured to play a strong role in the quality of the

resulting software system in OO development

environments [5]. Design complexity in traditional

development methods involved the modeling of

information flow in the application.

Hence, graph-theoretic measures [18] and

information-content driven measures [14] were used

for representing design complexity. In the OO

environment, certain integral design concepts such

as inheritance, coupling, and cohesion have been

argued to significantly affect complexity. Hence, OO

design complexity measures proposed in literature

have captured these design concepts [24].

One of the first suites of OO design measures was

proposed by Chidamber and Kemerer (CK) [10], [9].

The authors of this suite of metrics claim that these

measures can aid users in understanding design

complexity, in detecting design flaws and in

predicting certain project outcomes and external

software qualities such as software defects, testing,

and maintenance effort. Use of the CK set of metrics

and other complementary measures are gradually

growing in industry acceptance [24].

CK metrics suite [9] is one of the object-oriented

design complexity measurement systems which

support the measurement of the external quality

parameter which may evolve in software package.

The literature widely refers to the metric suite which

depends on the internal structural analysis of object-

oriented components such as inheritance, coupling,

cohesion, method invocation, and association [22].

2. CK Metrics:

The Chidamber and Kemerer have proposed six

class-based design metrics for object-oriented

systems [23][6].

 Coupling Between Objects (CBO). The CBO metric

counts the number of other classes to which a class

is coupled. It counts the number of reference types

that are used in attribute declarations, formal

parameters, return types, throws declarations, local

variables, and types from which attribute and

method selections are made. Primitive types, types

from the java.lang package, and supertypes are not

counted. High values of CBO metrics mean that the

class is highly coupled. The developers and testers

perceive that the maintainability and testability of

highly coupled classes is difficult.

which makes the process of maintaining and

uncovering faults prerelease and postrelease difficult

as well. The viewpoint are: If small values of CBO

then improve modularity and promote

encapsulation, indicates independence in the class

making easier its reuse, makes easier to maintain and

to test a class.

 Lack of Cohesion of Methods (LCOM). The LCOM

metric is the number of pairs of methods in the class

using no attributes in common (referred to as P),

minus the number of pairs of methods that do

(referred to as Q). The LCOM is set to zero if this

 Parul. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 5 of 7

International Journal of Science,
Engineering and Technology

An Open Access Journal

difference is negative. After considering each pair of

methods: LCOM = (P>Q) ? (P-Q) : 0. The LCOM

metric measures the coherence among local

methods in a class. The class that does one thing (i.e.,

cohesive class) is easier to reuse and maintain than

the class that does many different things (i.e., the

class provides many different services). The

viewpoints are: If great values of LCOM then

increases complexity, does not promotes

encapsulation and implies classes should probably

be split into two or more subclasses and helps to

identified low-quality design.

 Weighted Methods Complexity (WMC). The WMC

metric is the sum of the complexity of all methods

for a class. Normally, many metrics tools calculate

the WMC metric as simply the number of methods in

a class. This is equivalent to saying all functions have

equal complexity. However, in this research, the tool

we used (i.e., Borland Together) calculates the WMC

metric by summing the McCabe cyclomatic

complexity of all the methods in the class.

 Therefore, high values of the WMC metric mean high

complexities as well. The viewpoints are: WMC is a

predictor of how much time and effort is required to

develop and to maintain the class, the larger Number

of Method (NOM) the greater the impact on

children. Classes with large NOM are likely to be

more application specific, limiting the possibility of

reuse and making the effort expended one shot

investment.

 Depth of Inheritance Hierarchy (DIT). The DIT

measures the length of the inheritance chain from

the root of the inheritance tree to the measured

class. The DIT metric is an indicator of the number of

ancestors of a class. It may require developers and

testers to understand all ancestors to comprehend all

specializations of the class, which is necessary to

maintain or uncover pre and post release faults.

 The viewpoints are: If the greater values of DIT then

the greater the Number of Methods (NOM) it is likely

to inherit, making more complex to predict its

behavior, the greater the potential reuse of inherited

methods. Small values of DIT in most of the system’s

classes may be an indicator that designers are

forsaking reusability for simplicity of understanding.

Number of Child Classes (NOC). The NOC metric

counts the number of descendents of a class. The

number of children represents the number of

specializations and uses of a class. Therefore,

understanding all children classes is important to

understand the parent. The high number of children

increases the burden on developers and testers in

comprehending, maintaining, and uncovering pre

and post release faults.

The viewpoints are: If the greater is the NOC then the

greater is the reuse, the greater is the probability of

improper abstraction of the parent class, the greater

the requirements of methods testing in that class.

Small values of NOC, may be and indicator of lack of

communication between different class designers.

Response for class (RFC). The size of the response

set for the class includes methods in the class’s

inheritance hierarchy and methods that can be

invoked on other objects. The RFC metric counts the

number of methods in the response set for a class,

which includes the number of local methods and the

number of remote methods invoked by local

methods. The class that has a large number of

responsibilities tends to be large and has many

interactions with other classes. Therefore, such

classes are complex and incur more time and effort

to maintain and test than small classes. The

viewpoints are: If a large numbers of methods are

invoked from a class (RFC is high) then testing and

maintenance of the class become more complex.

3. MOOD Metrics:

Abreu et at. defined MOOD (Metrics for Object

Oriented Design) metrics[24,25,26]. MOOD refers to

a basic structural mechanism of the object-oriented

paradigm as encapsulation (MHF, AHF) inheritance

(MIF, AIF), polymorphism (POF), and message

passing (COF). We will discuss MOOD metrics in the

context of encapsulation, inheritance, polymorphism,

and coupling. These are discussed below:

3.1 Encapsulation: The Method Hiding Factor (MHF)

and Attribute Hiding Factor (AHF) were proposed

together as measure of encapsulation

 Method Hiding Factor (MHF). This metric is the ratio

of hidden (private or protected) methods to total

methods. As such, MHF is proposed as a measure of

encapsulation. If the value of MHF is high (100%), it

means all methods are private which indicates very

little functionality. Thus it is not possible to reuse

methods with high MHF. MHF with low (0%) value

 Parul. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 6 of 7

International Journal of Science,
Engineering and Technology

An Open Access Journal

indicate all methods are public that means most of the

methods are unprotected.

Attribute Hiding Factor (AHF). This metric is the

ratio of hidden (private or protected) attributes to

total attributes. AHF is also proposed as a measure of

encapsulation. If the value of AHF is high (100%), it

means all attributes are private. AHF with low (0%)

value indicates all attributes are public.

3.2 Inheritance: Inherited features in a class are

those which are inherited and not overridden in that

class. Method Inheritance Factor (MIF) and Attribute

Inheritance Factor (AIF) are proposed to measure

inheritance.

Method Inheritance Factor (MIF). This metric is a

count of the number of inherited methods as a ratio

of total methods. If the value of MIF is low (0%), it

means that there is no methods exists in the class as

well as the class lacking an inheritance statement

Attribute Inheritance Factor (AIF). This metric

counts the number of inherited attributes as a ratio

of total attributes. If the value of AIF is low (0%), it

means that there is no attribute exists in the class as

well as the class lacking an inheritance statement.

3.3 Polymorphism: Polymorphism is an important

characteristic in object oriented paradigm.

Polymorphism measure the degree of overriding in

the class inheritance tree.

Polymorphism Factor (PF). This metric is based on

the number of overriding methods in a class as a

ratio of the total possible number of overridden

methods. The value of POF can be varies between 0%

and 100%. If a project have 0% POF, it indicates the

project uses no polymorphism and 100% POF

indicates that all methods are overridden in all

derived classes

3.4 Coupling:

Coupling shows the relationship between modules. A

class is coupled to another class if it calls methods of

another class.

Coupling Factor (CF). This metric counts the

number of inter-class communications. The value of

COF can be varies between 0% and 100%. 0%COF

indicates no class are coupled and 100% COF

indicates all class are coupled with all other classes.

High values of COF should be avoided.

REFERENCES

[1] Balasubramanian NV.: “Object-oriented metrics”,

Proceedings 3rd Asia-Pacific Software

Engineering Conference (APSEC’96). IEEE

Computer Society, 1996; 30-34.

[2] Banker R. D., Datar S. M., Kemerer C.F., and Zweig

D., “Software Complexity and Software

Maintenance Costs,” Comm. ACM, vol. 36, no. 11,

pp. 81-94, 1993.

[3] Banker, Rajiv D., Kauffman, Robert J.,Kumar,

Rachina.: "An Empirical Test of Object-based

Output Measurement Metrics in a CASE

Environment." Journal of Management

Information Systems 8,3 (Winter 1991): 127-150.

[4] Basili V.R., Briand L.C., and Melo W.L., “A

validation of object-oriented design metrics as

quality indicators” IEEE Transactions on Software

Engineering, 22(10):751–761, October 1996.

[5] Booch G., “Object-Oriented Analysis and Design

with Applications”, second ed. Redwood City,

Calif.: Benjamin/Cummings, 1994.

[6] Camargo Cruz Ana Erika, “ Chidamber & Kemrer

Suite of Metrics”, Japan Advanced Institute of

Science and Technology School of Information,

May 2008.

[7] Cartwright M. and Shepperd M., “An Empirical

Investigation of an Object-Oriented Software

System,” IEEE Trans. Software Eng., vol. 26, no. 7,

pp. 786-796, Aug. 2000.

[8] Chidamber S.R., Darcy D.P., and Kemerer C.F.,

Managerial use of metrics for object-oriented

software: An exploratory analysis. IEEE

Transactions on Software Engineering, 24(8):629–

639,August 1998.

[9] Chidamber S. and Kemerer C.: “A Metrics Suite

for Object-oriented Design”, IEEE Transactions on

Software Engineering, vol. 20, no. 6, pp. 476-493,

June 1994.

[10] Chidamber S. R., and Kemerer C.F., “Towards a

Metrics Suite for Object-oriented Design,” Proc.

Conf. Object-oriented Programming Systems,

Languages, and Applications (OOPSLA’91), vol.

26, no. 11, pp. 197-211, 1991.

[11] Emam K. EL., Benlarbi S., Goel N., and Rai S. N.,

“The Confounding Effect of Class Size on the

Validity of Object-Oriented Metrics,” IEEE Trans.

Software Eng., vol. 27, pp. 630-650, 2001.

 Parul. International Journal of Science, Engineering and Technology, 2021, 9:4

Page 7 of 7

International Journal of Science,
Engineering and Technology

An Open Access Journal

[12] Fenton N. E., “Software Metrics: A Rigorous

Approach” London: Chapman and Hall, 1991.

[13] Grady R. B. and Caswell D. L., Software Metrics:

Establishing a Company-Wide Program. New

Jersey: Prentice Hall, 1987.

[14] Halstead M., Elements of Software Science. New

York: Elsevier North-Holland, 1977.

[15] Kitchenham B., Pfleeger S.L., and Fenton N.,

“Towards a framework for software measurement

validation” IEEE Transactions on Software

Engineering, 21(12):929–944, December 1995.

[16] Li W., “Another metric suite for object-oriented

programming”. Journal of Systems and Software,

44:155–162, 1998.

[17] Li W. and Henry S., “Object-oriented metrics that

predict maintainability” Journal of Systems and

Software, 23:111–122, 1993.

[18] McCabe T.J., “A Complexity Measure,” IEEE Trans.

Software Eng.,vol. 2, pp. 308-320, 1976

[19] Rosenberg, H Linda: “Applying and Interpreting

Object-oriented Metrics” Software Assurance

Technology Office (SATO).

[20] Rumbaugh, J.,Blaha, M., Premerlani,W., Eddy F.

And Lorenses, W: Object-oriented modeling and

design, Prentice Hall, 1991.

[21] Sarker M., “An overview of object-oriented

design metrics”, Thesis, Umea University,

Sweden, pp.9-10, June 2005

[22] Selvarani R., Nair T.R.G., Prasad V.K., “Estimation

of defect proneness using design complexity

measurements in object-oriented software”, IEEE

computer society: pp 766-770, 2009.

[23] Shatnawi R., “ A quantitative investigation of the

acceptable risk levels of object-oriented metrics

in open-source systems”, IEEE Transactions on

Software Engineering, Vol. 36, No.2, pp. 223-224

March/April 2010.

[24] Abreu F.B. and R.Carapuca.“Object-Oriented

Software Engineering: “Measuring and

Controlling the Development Process”.

Proceedings of the 4th International Conference

on Software Quality, McLean,Virginia,

USA,October ,1994.

[25] Abreu, B.F. and W.L. Melo (1996): “Evaluating the

impact of Object-Oriented Design on Software

Quality”, Proceedings of METRICS ’96, IEEE,

1996.pp. 90-99

[26] Abreu F.B.(1995):. ECOOP’95 Quantitive Methods

Workshop“Design Metrics for Object-Oriented

Software Systems”1995

[27] Subramanyam R., Krishnan M.S., “Empirical

analysis of CK metrics for object-oriented design

complexity: implications for software defects

Software Engineering”, IEEE Transactions on

Publication Date: April 2003 Volume: 29, Issue: 4

On page(s): 297- 310.

[28] Tang M. H., Kao M. H., Chen M. H., “An empirical

study on object-oriented metrics”, Computer

Science Department SUNY at Albany, NY 1222.

[29] Weyuker E., “Evaluating software complexity

measures” IEEE Transactions on Software

Engineering, 14:1357–1365, 1988.

